Lecture 3 — First-Order Theories

Ondřej Lengál

Faculty of Information Technology Brno University of Technology

IAM'19

First-Order Theories

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- A theory restricts the possible interpretations of a formula to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

- Validity: φ is valid iff $I \models \varphi$ for all interpretations I.
- There are interpretations for which the formula is not true

• e.g.,
$$I = {\mathbb{N}, \alpha_I}$$
 s.t. $\alpha_I(+) = {\dots, (1,1) \mapsto 3, \dots}$

■ We wish to restrict possible interpretations of $\varphi \leadsto$ theories.

2/28

Theories

Theory \mathcal{T} is defined using

- **signature** Σ_T : set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an *infinite* number of axioms → axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms or determines whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones
- We use **FOL**(\mathcal{T}) to denote FOL over $\Sigma_{\mathcal{T}}$ with axioms from $\mathcal{A}_{\mathcal{T}}$.

Fragment of a theory:

- a syntactically restricted subset of formulae of the theory
- e.g., the quantifier-free fragment, alternation-free fragment, fragments restricting the number of quantifier alternations, . . .
- we often show equivalence of fragments of FOL with other formal models

\mathcal{T} -validity and \mathcal{T} -satisfiability

\mathcal{T} -validity and \mathcal{T} -satisfiability:

■ \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

- A Σ_T -formula φ is T-valid if it holds for every T-interpretation.
 - we denote \mathcal{T} -validity as $\mathcal{T} \models \varphi$
- A Σ_T -formula φ is T-satisfiable if there is a T-interpretation for which it is true.

Completeness and Consistency

Completeness:

■ A theory \mathcal{T} is complete if for every *closed* $\Sigma_{\mathcal{T}}$ -formula φ ,

either
$$\mathcal{T} \vdash \varphi$$
 or $\mathcal{T} \vdash \neg \varphi$

 $(\mathcal{T} \vdash \varphi \text{ means "}\varphi \text{ is provable in }\mathcal{T}$ ").

- Can be seen as whether the axiomatization restricts interpretations in the right way.
- Do not confuse with the completeness of *proof systems*!
 - ▶ (A proof system S for FOL is *complete* if for every FOL formula φ such that $\models \varphi$, it holds that $\vdash_S \varphi$.)

Consistency:

- lacktriangle A theory $\mathcal T$ is consistent if there is at least one $\mathcal T$ -interpretation.
- Alternative definition: A theory is inconsistent if for every $\Sigma_{\mathcal{T}}$ -formula φ it holds that $\mathcal{T} \vdash \varphi$, otherwise it is consistent.

Decidability

Decidability

- **a theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(∅), i.e. FOL without any theory, is **undecidable**
- **a fragment** of \mathcal{T} is decidable if it is decidable for each formula φ that obeys the fragment's syntactic restrictions.
- quantifier-free fragment:
 - validity/satisfiability in FOL are defined for ground formulae only
 - satisfiability: when testing satisfiability, a quantifier-free formula is prefixed by existential quantification of free variables
 - validity: when testing validity, a quantifier-free formula is prefixed by universal quantification of free variables

Theory of Equality \mathcal{T}_E

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- Signature: $\{=, f, g, h, \ldots, p, q, r, \ldots\}$
 - ightharpoonup equality (=)/2 and all function and predicate symbols
- Axioms:

- $2 \quad \forall x, y \cdot x = y \quad \rightarrow \quad y = x$ (symmetry)
- $\exists \forall x, y, z . \ x = y \land y = z \quad \rightarrow \quad x = z$ (transitivity)
- 4 for every positive integer n and n-ary function symbol f,

$$\forall \overline{x}, \overline{y} : \left(\bigwedge_{i=1}^n x_i = y_i \right) \rightarrow f(\overline{x}) = f(\overline{y})$$
 (function congruence)

5 for every positive integer n and n-ary predicate symbol p,

$$\forall \overline{x}, \overline{y} : \left(\bigwedge_{i=1}^n x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y}))$$
 (predicate congruence)

 \overline{x} denotes a list of variables x_1, \ldots, x_n

- Note that only the (=) predicate symbol is interpreted.
- Note that [4] and [5] are axiom schemata.

Theory of Equality \mathcal{T}_E

- **undecidable**: it allows all functions and predicates
 - (any FOL formula can be encoded into \mathcal{T}_E)
- the quantifier-free fragment is decidable
 - using the congruence closure algorithm
- lacktriangleright \mathcal{T}_E is often used as a part of other theories
 - some definitions of FOL treat (=) as a special predicate

Example

The formula

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

is unsatisfiable.

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

- Signature: $\{0, S, +, \cdot, =\}$
 - \triangleright 0/0 is a constant (nullary functions)
 - ightharpoonup S/1 is a unary function symbol (called *successor*)
 - \blacktriangleright (+)/2 and (·)/2 are binary function symbols
 - ightharpoonup equality (=)/2 is a binary predicate symbol

Axioms:

3 for every $\Sigma_{\mathcal{T}_{\mathsf{PA}}}$ -formula φ with precisely one free variable,

$$\left(\varphi(0) \wedge (\forall x. \ \varphi(x) \to \varphi(S(x)))\right) \quad \to \quad \forall x. \ \varphi(x) \qquad \text{(induction)}$$

$$\forall x. \ x+0=x$$

(plus zero)

5
$$\forall x, y. \ x + S(y) = S(x+y)$$

(plus successor) (times zero)

$$\forall x, y. \ x \cdot S(y) = x \cdot y + x$$

(times successor)

6 $\forall x. \ x \cdot 0 = 0$

- Intended interpretations:
 - ightharpoonup standard meaning of the function and predicate symbols over $\mathbb N$

Example (<)

We can define inequality < using the following equivalence:

$$x \leq y$$

$$\Leftrightarrow$$

$$x \le y \qquad \Leftrightarrow \qquad \exists z \ . \ x + z = y.$$

Example

$$\exists x, y, z : x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$$

undecidable

Theorem (Gödel's First Incompleteness Theorem (Gödel 1931))

Every consistent recursive FOL theory that contains \mathcal{T}_{PA} is incomplete.

Notes:

- recursive theory: there is an algorithm that will, given a formula φ , decide whether φ is an axiom of the theory
 - all commonly considered theories are recursive
- therefore, if \mathcal{T}_{PA} is consistent, there is a $\Sigma_{\mathcal{T}_{PA}}$ -formula φ such that

neither
$$\mathcal{T}_{PA} \vdash \varphi$$
 nor $\mathcal{T}_{PA} \vdash \neg \varphi$

therefore, every sufficiently strong formal system (in particular, a system with arithmetic) is either inconsistent or incomplete

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let
$$\Sigma = \{a,b,c\}$$
 and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., $\#(a) = 2, \#(b) = 3, \#(c) = 4$. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string " $abcba$ ".

- Therefore, any formula φ can also be encoded as a number.
 - ightharpoonup called its Gödel number $\mathcal{G}(\varphi)$
- A proof $P \leadsto$ also a number $\mathcal{G}(P)$.
- Application of proof rules ~ manipulation with numbers.
- lacktriangle Consider the formula $\alpha(x,y)$ that encodes the statement

$$\alpha(x,y) \stackrel{\text{def}}{\Leftrightarrow} \mathcal{G}^{-1}(x)$$
 is a proof of the formula $\mathcal{G}^{-1}(y)$.

Lecture 3 First-Order Theories IAM'19 12/28

Proof. (cont.)

$$\alpha(x,y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \mathcal{G}^{-1}(x) \text{ is a proof of the formula } \mathcal{G}^{-1}(y).$$

Now, take the formula

$$Bew(y) \stackrel{\mathsf{def}}{\Leftrightarrow} \exists x . \alpha(x,y)$$

expressing " $\mathcal{G}^{-1}(y)$ is a provable *(beweisbar)* formula" ($\vdash \mathcal{G}^{-1}(y)$)

- Note that $\mathcal{G}^{-1}(y)$ is provable iff Bew(y) is provable.
- Consider the following statement:

Gödel's Statement

$$\varphi \overset{\mathsf{def}}{\Leftrightarrow} \neg Bew(\mathcal{G}(\varphi))$$

$$\begin{array}{cccc} \models \varphi & \Rightarrow & \not\vdash \varphi \\ \models \neg \varphi & \Rightarrow & \vdash \varphi \end{array}$$

" φ is true iff φ is unprovable."

■ Generalization of the "Liar's paradox." (diagonalization)

Gödel's Incompleteness₂ and Completeness₁ Theorems:

Theorem (Gödel's Completeness₁ Theorem)

FOL with the semantic argument proof system is complete₁.

- The theorem also holds for any other standard proof system:
 - ► Hilbert system, natural deduction, ...
- Completeness: two different meanings, complete₁ and complete₂
 - ▶ G's Completeness₁ T.: a system S is complete₁ if for any φ s.t. $\models \varphi$ it holds that $\vdash_S \varphi$.
 - ▶ G's Incompleteness₂ T.: a theory \mathcal{T} is complete₂ if for any *closed* $\Sigma_{\mathcal{T}}$ -formula φ , either $\mathcal{T} \vdash \varphi$ or $\mathcal{T} \vdash \neg \varphi$.
- G's Incompleteness₂ T. says the following:
 G's Statement (GS) is neither provable nor disprovable in PA.
- Therefore, by G's Completeness₁ T., there are models of PA where GS is false. But GS is true in the standard model.
- there exist nondstandard models of Peano Arithmetic

14/28

Presburger Arithmetic $\mathcal{T}_{\mathbb{N}}$

Presburger Arithmetic $\mathcal{T}_{\mathbb{N}}$:

- Signature: $\{0, S, +, =\}$
 - ightharpoonup 0/0 and is a constant (nullary functions)
 - \triangleright S/1 is a unary function symbol (called *successor*)
 - ightharpoonup (+)/2 and is a binary function symbol
 - ightharpoonup equality (=)/2 is a binary predicate symbol
- Axioms (a subset of Peano arithmetic):

$$5 \forall x, y. \ x + S(y) = S(x+y)$$
 (plus successor)

Presburger Arithmetic $\mathcal{T}_{\mathbb{N}}$

- intended interpretations:
 - lacktriangle standard meaning of the function and predicate symbols over ${\mathbb N}$
- decidable [Presburger 1929]
- decision procedures:
 - quantifier elimination-based
 - automata-based
- lacksquare it is easy to extend to integers $\mathbb Z$

Example

The following formula over \mathbb{Z}

$$\forall x, z \exists y . 2x - y = 3z + 5$$

can be written when using variables over $\ensuremath{\mathbb{N}}$ as

$$\forall x_p, x_n, z_p, z_n \ \exists y_p, y_n \ . \ 2(x_p - x_n) - (y_p - y_n) = 3(z_p - z_n) + 5.$$

Expressed in $\mathcal{T}_{\mathbb{N}}$ by moving negative terms to the other side:

$$\forall x_p, x_n, z_p, z_n \; \exists y_p, y_n \; . \; 2x_p + y_n + 3z_n = 3z_p + 5 + 2x_n + y_p.$$

16/28

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$:

Signature:

$$\{\ldots, -2, -1, 0, 1, 2, \ldots, (-3\cdot), (-2\cdot), (2\cdot), (3\cdot), \ldots, +, -, =, <\}$$

- \triangleright ..., -2, -1, 0, 1, 2, ... are constants intended to be assigned to the obvious values in \mathbb{Z}
- $-\dots$, $(-2\cdot)$, $(-1\cdot)$, $(1\cdot)$, $(2\cdot)$, \dots are unary functions intended to be assigned to constant coefficients
- (+)/2 and (-)/2 are binary function symbols intended to represent $+_{\mathbb{Z}}$ and $-_{\mathbb{Z}}$ respectively
- (=)/2 and (<)/2 are binary predicate symbols intended to represent $=_{\mathbb{Z}}$ and $<_{\mathbb{Z}}$ respectively
- Every $\Sigma_{\mathcal{T}_{z}}$ -formula can be reduced to $\Sigma_{\mathcal{T}_{N}}$.

Theory of Reals $\mathcal{T}_{\mathbb{R}}$ (elementary algebra):

- Signature: $\{0, 1, +, \cdot, -, =, \leq\}$
 - \triangleright 0/0 and 1/0 are constants
 - (+)/2 and $(\cdot)/2$ are binary function symbols
 - (-)/1 is a unary function symbol (additive inverse)
 - (=)/2 and $\leq /2$ are binary predicate symbols
- Axioms: the axioms are split into several groups
- Axioms of an abelian group:
 - 1 $\forall x, y, z. (x + y) + z = x + (y + z)$
 - $\forall x. \ x+0=x$
 - $\forall x. \ x + (-x) = 0$
 - $\forall x, y. \ x + y = y + x$

Additional axioms of a ring:

- $\forall x, y, z. \ (xy)z = x(yz)$
- $\forall x. \ x1 = x$
- $\exists \forall x. \ 1x = x$
- $\forall x, y, z. \ x(y+z) = xy + xz$
- $\forall x, y, z. \ (x+y)z = xz + yz$

Additional axioms of a field:

- 1 $\forall x, y. \ xy = yx$
- $0 \neq 1$
- $\exists \forall x. \ x \neq 0 \rightarrow \exists y. \ xy = 1$

```
(· commutativity)
(separate identities)
(· inverse)
```

Axioms of a total order:

- 1 $\forall x, y. \ x \leq y \land y \leq x \rightarrow x = y$ (antisymmetry) 2 $\forall x, y, z. \ x \leq y \land y \leq z \rightarrow x \leq z$ (transitivity) 3 $\forall x, y. \ x < y \lor y < x$ (totality)
- Additional axioms of a real closed field:

1
$$\forall x, y, z. \ x \leq y \rightarrow x + z \leq y + z$$
 (+ ordered)
2 $\forall x, y. \ 0 \leq x \land 0 \leq y \rightarrow 0 \leq xy$ (· ordered)
3 $\forall x \exists y. \ x = y^2 \lor x = -y^2$ (square root)

4 for every odd integer n,

$$\forall \overline{x} \exists y. \ y^n + x_1 y^{n-1} + \dots + x_{n-1} y + x_n = 0$$
 (at least one root)

- decidable [Tarski 1956]
 - via quantifier elimination

Example

Can you find a quantifier-free formula $\mathcal{T}_{\mathbb{R}}$ -equivalent to the formula

$$\exists x . ax^2 + bx + c = 0?$$

Solution: the formula

$$b^2 - 4ac \ge 0.$$

Theory of Rationals $\mathcal{T}_{\mathbb{O}}$:

- Signature: $\{0, 1, +, -, =, \leq\}$
 - \blacktriangleright (same as for $\mathcal{T}_{\mathbb{R}}$ excluding $(\cdot)/2$)
- Axioms:

$$1 \quad \forall x, y. \ x \le y \land y \le x \quad \rightarrow \quad x = y$$

$$\forall x, y, z. \ x \leq y \land y \leq z \rightarrow x \leq z$$

$$\forall x, y. \ x \leq y \lor y \leq x$$

4
$$\forall x, y, z. (x + y) + z = x + (y + z)$$

5
$$\forall x. \ x + 0 = x$$

6
$$\forall x. \ x + (-x) = 0$$

$$\forall x, y. \ x + y = y + x$$

8
$$\forall x, y, z. \ x \leq y \rightarrow x + z \leq y + z$$

9 for each positive integer n,

$$\forall x . nx = 0 \rightarrow x = 0$$

10 for each positive integer n,

$$\forall x \; \exists y. \; x = ny$$

where
$$nx$$
 denotes $\underbrace{x + \cdots + x}^{n}$

(antisymmetry) (transitivity)

(totality)

(+ associativity) (+ identity)

(+ inverse)

(+ commutativity) (+ ordered)

(torsion-free)

(divisible)

- decidable
 - via quantifier elimination

Example

The formula

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

can be expressed as the $\Sigma_{\mathcal{T}_{\mathbb{Z}}}\text{-formula}$

$$3x + 4y \ge 24.$$

Example

The formula

$$\exists x . xx = 2$$

is a valid formula of $\mathcal{T}_{\mathbb{R}}$ but is expressible in neither $\mathcal{T}_{\mathbb{Q}}$ nor $\mathcal{T}_{\mathbb{Z}}$.

Example

The formula

$$\forall x,y \ . \ x < y \quad \rightarrow \quad \exists z \ . \ x < z \land z < y$$

is a valid formula of $\mathcal{T}_{\mathbb{R}}$ and $\mathcal{T}_{\mathbb{Q}}$, but an invalid formula of $\mathcal{T}_{\mathbb{N}}$ and $\mathcal{T}_{\mathbb{Z}}$.

23/28

Theory of Lists $\mathcal{T}_{\mathsf{List}}$

Theory of Lists \mathcal{T}_{List} :

- Signature: {cons, car, cdr, atom, =}
 - cons/2 is a function called the constructor
 - car/1 and cdr/1 are functions called left and right projector
 - ightharpoonup atom/1 and (=)/2 are predicates
- Axioms:
 - f 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
 - 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\begin{array}{lll} \forall x_1,x_2,y_1,y_2 \;.\; x_1=x_2 \wedge y_1=y_2 & \rightarrow & \operatorname{cons}(x_1,y_1)=\operatorname{cons}(x_2,y_2) \\ \forall x,y \;.\; x=y & \rightarrow & \operatorname{car}(x)=\operatorname{car}(y) \\ \forall x,y \;.\; x=y & \rightarrow & \operatorname{cdr}(x)=\operatorname{cdr}(y) \end{array}$$

3 an instantiation of the (predicate congruence) axiom scheme of \mathcal{T}_E :

$$\forall x,y \;.\; x=y \quad \rightarrow \quad (\mathsf{atom}(x) \mathop{\leftrightarrow} \mathsf{atom}(y))$$

6
$$\forall x . \neg \mathsf{atom}(x) \rightarrow \mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) = x$$
 (construction)
7 $\forall x, y . \neg \mathsf{atom}(\mathsf{cons}(x, y))$ (atom)

Theory of Lists \mathcal{T}_{List}

- undecidable
- Theory of Acyclic Lists $\mathcal{T}_{\text{List}}^+$:
 - created by adding the following axiom schema:

$$\forall x \cdot \mathsf{car}(x) \neq x$$

$$\forall x \cdot \mathsf{cdr}(x) \neq x$$

$$\forall x \cdot \mathsf{car}(\mathsf{car}(x)) \neq x$$

$$\forall x \cdot \mathsf{car}(\mathsf{cdr}(x)) \neq x$$

$$\dots$$

- decidable
- the quantifier-free fragment is decidable
- a more general Theory of Recursive Data Structures available

Theory of Arrays \mathcal{T}_A

Theory of Arrays \mathcal{T}_A :

- Signature: $\{\cdot[\cdot], \cdot\langle\cdot\triangleleft\cdot\rangle, =\}$
 - $ightharpoonup \cdot [\cdot]/2$ is a function called the read
 - $ightharpoonup \cdot \langle \cdot \triangleleft \cdot \rangle / 3$ is a function called the write
 - (=)/2 is a predicate

Axioms:

- f 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- $2 \quad \forall a, i, j : i = j \quad \rightarrow \quad a[i] = a[j]$
- $\exists \forall a, v, i, j : i = j \rightarrow a \langle i \triangleleft v \rangle[j] = v$
- $4 \quad \forall a, v, i, j : i \neq j \quad \rightarrow \quad a \langle i \triangleleft v \rangle [j] = a[j]$

(array congruence)

(read over write 1)

(read over write 2)

Theory of Arrays \mathcal{T}_A

- undecidable
 - arbitrary functions can be encoded using multi-dimensional arrays
- extended with the (extensionality) axiom, the quantifier-free fragment is decidable

$$\forall a,b \;.\; (\forall i \;.\; a[i] = b[i]) \quad \leftrightarrow \quad a = b \qquad \qquad (\text{extensionality})$$

Example

The formula

$$a[i] = e \quad \rightarrow \quad \forall j . \ a \langle i \triangleleft e \rangle[j] = a[j]$$

is \mathcal{T}_{Δ} -valid.

References

[A.R. Bradley and Z. Manna. The Calculus of Computation.]
[Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid.]

[Vojtěch Kolman. Filosofie čísla.]