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First-Order Theories
First-Order Theories

When reasoning in first-order logic (FOL), we use theories to add
semantics to function/predicate symbols.
A theory restricts the possible interpretations of a formula to those
we are interested in.

Example
Is the following

ϕ : 1 + 1 = 2

a valid FOL formula? Why?
Validity: ϕ is valid iff I |= ϕ for all interpretations I.
There are interpretations for which the formula is not true
I e.g., I = {N, αI} s.t. αI(+) = {. . . , (1, 1) 7→ 3, . . .}

We wish to restrict possible interpretations of ϕ theories.
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Theories
Theory T is defined using

signature ΣT : set of function and predicate symbols
I note that constants are special function symbols!
I ΣT -formula: a formula over ΣT

axioms AT : set of closed FOL formulae over the vocabulary of ΣT
I often, we need an infinite number of axioms axiom schemata
I axiom schema — a template whose instantiations produce axioms
I can be seen as a program that generates axioms or determines

whether a formula is an axiom
I axioms are used to restrict possible interpretations of formulae to

interesting ones

We use FOL(T ) to denote FOL over ΣT with axioms from AT .

Fragment of a theory:

a syntactically restricted subset of formulae of the theory

e.g., the quantifier-free fragment, alternation-free fragment, fragments
restricting the number of quantifier alternations, . . .

we often show equivalence of fragments of FOL with other formal models
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T -validity and T -satisfiability

T -validity and T -satisfiability:
T -interpretation: an interpretation I that satisfies all axioms of T :

I |= A for every A ∈ AT .

A ΣT -formula ϕ is T -valid if it holds for every T -interpretation.
I we denote T -validity as T |= ϕ

A ΣT -formula ϕ is T -satisfiable if there is a T -interpretation for
which it is true.
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Completeness and Consistency
Completeness:

A theory T is complete if for every closed ΣT -formula ϕ,

either T ` ϕ or T ` ¬ϕ

(T ` ϕ means “ϕ is provable in T ”).
I Can be seen as whether the axiomatization restricts interpretations

in the right way.

Do not confuse with the completeness of proof systems!
I (A proof system S for FOL is complete if for every FOL formula ϕ

such that |= ϕ, it holds that `S ϕ.)

Consistency:
A theory T is consistent if there is at least one T -interpretation.
Alternative definition: A theory is inconsistent if for every
ΣT -formula ϕ it holds that T ` ϕ, otherwise it is consistent.
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Decidability

Decidability
a theory T is decidable if there is an algorithm that for every
ΣT -formula ϕ terminates with “yes” if T |= ϕ and with “no” if
T 6|= ϕ (and the algorithm always terminates).

FOL(∅), i.e. FOL without any theory, is undecidable

a fragment of T is decidable if it is decidable for each formula ϕ
that obeys the fragment’s syntactic restrictions.

quantifier-free fragment:
I validity/satisfiability in FOL are defined for ground formulae only
I satisfiability: when testing satisfiability, a quantifier-free formula is

prefixed by existential quantification of free variables
I validity: when testing validity, a quantifier-free formula is prefixed by

universal quantification of free variables
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Theory of Equality TE
Theory of Equality TE (with Uninterpreted Functions):

Signature: {=, f, g, h, . . . , p, q, r, . . .}
I equality (=)/2 and all function and predicate symbols

Axioms:
1 ∀x . x = x (reflexivity)
2 ∀x, y . x = y → y = x (symmetry)
3 ∀x, y, z . x = y ∧ y = z → x = z (transitivity)
4 for every positive integer n and n-ary function symbol f ,

∀x, y .

(
n∧

i=1

xi = yi

)
→ f(x) = f(y) (function congruence)

5 for every positive integer n and n-ary predicate symbol p,

∀x, y .

(
n∧

i=1

xi = yi

)
→ (p(x)↔ p(y)) (predicate congruence)

x denotes a list of variables x1, . . . , xn
Note that only the (=) predicate symbol is interpreted.
Note that [4] and [5] are axiom schemata.
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Theory of Equality TE

undecidable: it allows all functions and predicates
I (any FOL formula can be encoded into TE)

the quantifier-free fragment is decidable
I using the congruence closure algorithm

TE is often used as a part of other theories
I some definitions of FOL treat (=) as a special predicate

Example
The formula

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) 6= a

is unsatisfiable.

Lecture 3 First-Order Theories IAM’19 8 / 28



Peano Arithmetic TPA

Peano Arithmetic TPA (first-order arithmetic):
Signature: {0, S,+, ·,=}
I 0/0 is a constant (nullary functions)
I S/1 is a unary function symbol (called successor)
I (+)/2 and (·)/2 are binary function symbols
I equality (=)/2 is a binary predicate symbol

Axioms:
1 ∀x. ¬(S(x) = 0) (zero)
2 ∀x, y. S(x) = S(y) → x = y (successor)
3 for every ΣTPA -formula ϕ with precisely one free variable,(

ϕ(0) ∧ (∀x. ϕ(x)→ϕ(S(x)))
)
→ ∀x. ϕ(x) (induction)

4 ∀x. x+ 0 = x (plus zero)
5 ∀x, y. x+ S(y) = S(x+ y) (plus successor)
6 ∀x. x · 0 = 0 (times zero)
7 ∀x, y. x · S(y) = x · y + x (times successor)
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Peano Arithmetic TPA

Intended interpretations:
I standard meaning of the function and predicate symbols over N

Example (≤)
We can define inequality ≤ using the following equivalence:

x ≤ y ⇔ ∃z . x+ z = y.

Example

∃x, y, z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx+ yy = zz
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Peano Arithmetic TPA

undecidable

Theorem (Gödel’s First Incompleteness Theorem (Gödel 1931))
Every consistent recursive FOL theory that contains TPA is incomplete.

Notes:
recursive theory: there is an algorithm that will, given a formula ϕ,
decide whether ϕ is an axiom of the theory
I all commonly considered theories are recursive

therefore, if TPA is consistent, there is a ΣTPA-formula ϕ such that

neither TPA ` ϕ nor TPA ` ¬ϕ

therefore, every sufficiently strong formal system (in particular,
a system with arithmetic) is either inconsistent or incomplete
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Peano Arithmetic TPA

Proof. (high-level idea).
Words over an alphabet Σ can be encoded as numbers in TPA.

Example
Let Σ = {a, b, c} and let # : Σ→ N be injective, e.g.,
#(a) = 2,#(b) = 3,#(c) = 4. Then the number

2#(a) · 3#(b) · 5#(c) · 7#(b) · 11#(a) = 2, 801, 452, 500

uniquely encodes the string “abcba”.

Therefore, any formula ϕ can also be encoded as a number.
I called its Gödel number G(ϕ)

A proof P  also a number G(P ).
Application of proof rules manipulation with numbers.
Consider the formula α(x, y) that encodes the statement

α(x, y)
def⇔ G−1(x) is a proof of the formula G−1(y).
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Peano Arithmetic TPA

Proof. (cont.)

α(x, y)
def⇔ G−1(x) is a proof of the formula G−1(y).

Now, take the formula

Bew(y)
def⇔ ∃x . α(x, y)

expressing “G−1(y) is a provable (beweisbar) formula” (` G−1(y))
Note that G−1(y) is provable iff Bew(y) is provable.
Consider the following statement:

Gödel’s Statement

ϕ
def⇔ ¬Bew(G(ϕ))

“ϕ is true iff ϕ is unprovable.”

|= ϕ ⇒ 6` ϕ
|= ¬ϕ ⇒ ` ϕ

Generalization of the “Liar’s paradox.” (diagonalization)
Lecture 3 First-Order Theories IAM’19 13 / 28



Peano Arithmetic TPA
Gödel’s Incompleteness2 and Completeness1 Theorems:
Theorem (Gödel’s Completeness1 Theorem)
FOL with the semantic argument proof system is complete1.

The theorem also holds for any other standard proof system:
I Hilbert system, natural deduction, . . .

Completeness: two different meanings, complete1 and complete2

I G’s Completeness1 T.: a system S is complete1 if for any ϕ s.t. |= ϕ
it holds that `S ϕ.

I G’s Incompleteness2 T.: a theory T is complete2 if for any closed
ΣT -formula ϕ, either T ` ϕ or T ` ¬ϕ.

G’s Incompleteness2 T. says the following:
G’s Statement (GS) is neither provable nor disprovable in PA.

Therefore, by G’s Completeness1 T., there are models of PA
where GS is false. But GS is true in the standard model.
 there exist nondstandard models of Peano Arithmetic
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Presburger Arithmetic TN

Presburger Arithmetic TN:
Signature: {0, S,+,=}
I 0/0 and is a constant (nullary functions)
I S/1 is a unary function symbol (called successor)
I (+)/2 and is a binary function symbol
I equality (=)/2 is a binary predicate symbol

Axioms (a subset of Peano arithmetic):
1 ∀x. ¬(S(x) = 0) (zero)
2 ∀x, y. S(x) = S(y) → x = y (successor)
3
(
ϕ(0) ∧ (∀x. ϕ(x)→ϕ(S(x)))

)
→ ∀x. ϕ(x) (induction)

4 ∀x. x+ 0 = x (plus zero)
5 ∀x, y. x+ S(y) = S(x+ y) (plus successor)
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Presburger Arithmetic TN
intended interpretations:
I standard meaning of the function and predicate symbols over N

decidable [Presburger 1929]
decision procedures:
I quantifier elimination-based
I automata-based

it is easy to extend to integers Z

Example
The following formula over Z

∀x, z ∃y . 2x− y = 3z + 5

can be written when using variables over N as

∀xp, xn, zp, zn ∃yp, yn . 2(xp − xn)− (yp − yn) = 3(zp − zn) + 5.

Expressed in TN by moving negative terms to the other side:

∀xp, xn, zp, zn ∃yp, yn . 2xp + yn + 3zn = 3zp + 5 + 2xn + yp.
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Theory of Integers TZ

Theory of Integers TZ:
Signature:
{. . . ,−2,−1, 0, 1, 2, . . . , (−3·), (−2·), (2·), (3·), . . . ,+,−,=, <}
I . . . ,−2,−1, 0, 1, 2, . . . are constants intended to be assigned to the

obvious values in Z
I . . . , (−2·), (−1·), (1·), (2·), . . . are unary functions intended to be

assigned to constant coefficients
I (+)/2 and (−)/2 are binary function symbols intended to represent

+Z and −Z respectively
I (=)/2 and (<)/2 are binary predicate symbols intended to

represent =Z and <Z respectively

Every ΣTZ-formula can be reduced to ΣTN .

Lecture 3 First-Order Theories IAM’19 17 / 28



Theory of Reals TR

Theory of Reals TR (elementary algebra):

Signature: {0, 1,+, ·,−,=,≤}
I 0/0 and 1/0 are constants
I (+)/2 and (·)/2 are binary function symbols
I (−)/1 is a unary function symbol (additive inverse)
I (=)/2 and ≤ /2 are binary predicate symbols

Axioms: the axioms are split into several groups

Axioms of an abelian group:
1 ∀x, y, z. (x+ y) + z = x+ (y + z) (+ associativity)
2 ∀x. x+ 0 = x (+ identity)
3 ∀x. x+ (−x) = 0 (+ inverse)
4 ∀x, y. x+ y = y + x (+ commutativity)
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Theory of Reals TR

Additional axioms of a ring:
1 ∀x, y, z. (xy)z = x(yz) (· associativity)
2 ∀x. x1 = x (· right identity)
3 ∀x. 1x = x (· left identity)
4 ∀x, y, z. x(y + z) = xy + xz (· left distributivity over +)
5 ∀x, y, z. (x+ y)z = xz + yz (· right distributivity over +)

Additional axioms of a field:
1 ∀x, y. xy = yx (· commutativity)
2 0 6= 1 (separate identities)
3 ∀x. x 6= 0 → ∃y. xy = 1 (· inverse)
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Theory of Reals TR

Axioms of a total order:
1 ∀x, y. x ≤ y ∧ y ≤ x → x = y (antisymmetry)
2 ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
3 ∀x, y. x ≤ y ∨ y ≤ x (totality)

Additional axioms of a real closed field:
1 ∀x, y, z. x ≤ y → x+ z ≤ y + z (+ ordered)
2 ∀x, y. 0 ≤ x ∧ 0 ≤ y → 0 ≤ xy (· ordered)
3 ∀x ∃y. x = y2 ∨ x = −y2 (square root)
4 for every odd integer n,

∀x ∃y. yn + x1y
n−1 + · · ·+ xn−1y + xn = 0 (at least one root)
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Theory of Reals TR

decidable [Tarski 1956]
I via quantifier elimination

Example
Can you find a quantifier-free formula TR-equivalent to the formula

∃x . ax2 + bx+ c = 0?

Solution: the formula
b2 − 4ac ≥ 0.
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Theory of Rationals TQ
Theory of Rationals TQ:

Signature: {0, 1,+,−,=,≤}
I (same as for TR excluding (·)/2)

Axioms:
1 ∀x, y. x ≤ y ∧ y ≤ x → x = y (antisymmetry)
2 ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
3 ∀x, y. x ≤ y ∨ y ≤ x (totality)
4 ∀x, y, z. (x+ y) + z = x+ (y + z) (+ associativity)
5 ∀x. x+ 0 = x (+ identity)
6 ∀x. x+ (−x) = 0 (+ inverse)
7 ∀x, y. x+ y = y + x (+ commutativity)
8 ∀x, y, z. x ≤ y → x+ z ≤ y + z (+ ordered)
9 for each positive integer n,

∀x . nx = 0 → x = 0 (torsion-free)

10 for each positive integer n,

∀x ∃y. x = ny (divisible)

where nx denotes
n︷ ︸︸ ︷

x+ · · ·+ x
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Theory of Rationals TQ
decidable
I via quantifier elimination

Example
The formula 1

2
x+

2

3
y ≥ 4

can be expressed as the ΣTZ-formula

3x+ 4y ≥ 24.

Example
The formula

∃x . xx = 2

is a valid formula of TR but is expressible in neither TQ nor TZ.

Example
The formula

∀x, y . x < y → ∃z . x < z ∧ z < y

is a valid formula of TR and TQ, but an invalid formula of TN and TZ.
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Theory of Lists TList
Theory of Lists TList:

Signature: {cons, car, cdr, atom,=}
I cons/2 is a function called the constructor
I car/1 and cdr/1 are functions called left and right projector
I atom/1 and (=)/2 are predicates

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 instantiations of the (function congruence) axiom scheme of TE :

∀x1, x2, y1, y2 . x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)

∀x, y . x = y → car(x) = car(y)

∀x, y . x = y → cdr(x) = cdr(y)

3 an instantiation of the (predicate congruence) axiom scheme of TE :

∀x, y . x = y → (atom(x)↔ atom(y))

4 ∀x, y . car(cons(x, y)) = x (left projection)
5 ∀x, y . cdr(cons(x, y)) = y (right projection)
6 ∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
7 ∀x, y . ¬atom(cons(x, y)) (atom)
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Theory of Lists TList

undecidable
Theory of Acyclic Lists T +

List:
I created by adding the following axiom schema:

∀x . car(x) 6= x

∀x . cdr(x) 6= x

∀x . car(car(x)) 6= x

∀x . car(cdr(x)) 6= x

. . .

I decidable

the quantifier-free fragment is decidable
a more general Theory of Recursive Data Structures available
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Theory of Arrays TA

Theory of Arrays TA:
Signature: {·[·], ·〈· / ·〉,=}
I ·[·]/2 is a function called the read
I ·〈· / ·〉/3 is a function called the write
I (=)/2 is a predicate

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 ∀a, i, j . i = j → a[i] = a[j] (array congruence)
3 ∀a, v, i, j . i = j → a〈i / v〉[j] = v (read over write 1)
4 ∀a, v, i, j . i 6= j → a〈i / v〉[j] = a[j] (read over write 2)
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Theory of Arrays TA

undecidable
I arbitrary functions can be encoded using multi-dimensional arrays

extended with the (extensionality) axiom, the quantifier-free
fragment is decidable

∀a, b . (∀i . a[i] = b[i]) ↔ a = b (extensionality)

Example
The formula

a[i] = e → ∀j . a〈i / e〉[j] = a[j]

is TA-valid.
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