Lecture 2 — First-Order Logic

Ondrej Lengal

Faculty of Information Technology
Brno University of Technology

IAM’'19

First-Order Logic
First-Order Logic (FOL)

m also called (first-order) predicate logic, predicate calculus, ...

m generalizes propositional logic by
> interpreting (“looking inside”) propositions

> talks about elements of a universe—denoted by terms formed from
variables, constants, and functions

® eg., 5, f(z,2), +(40,2) [= 40 + 2], fatherOf (motherOf (x)),
head("abc"), sin(y), ...

> propositions are substituted with predicates over terms
® eg., z =y, even(x), p(z,y, 2), isFatherOf (z,y), ...

> introducing quantifiers to express existential or universal properties
about elements of the universe (first-order quantification)
° Vv, 3

m much more expressive than propositional logic!
> therefore, also more complex (in general undecidable)

Lecture 5 First-Order Logic IAM'19 2/26

First-Order Logic — Examples

What is expressible in FOL? (informal examples)

SPOILER ALERT!)

m “All men are mortal. Socrates is a man. Therefore Socrates is mortal.”

E ((Vz. man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

o

m “All men are mortal. Elvis is immortal. Therefore Elvis is not a man.”

E ((Vz. man(z) — mortal(x)) A =mortal(Elvis)) — ~man(Elvis)

Lecture 5 First-Order Logic IAM'19 3/26

First-Order Logic — Examples

m “Luke is a Jedi.”:
E isJedi(Luke)

m “Anakin is the father of Luke.”:

= isFatherOf (Anakin, Luke) or
= Anakin = fatherOf (Luke)

m also means “Luke is a son of Anakin.”

m “Gandalf is not the father of Luke.”:

= —isFatherOf (Gandalf, Luke) or
E —(Gandalf = fatherOf (Luke))
(& [Gandalf # fatherOf (Luke))

Lecture 5 First-Order Logic IAM'19 4/26

First-Order Logic — Examples

m “Anakin is the father of Luke and Leia.”:

= isFatherOf (Anakin, Luke) A isFatherOf (Anakin, Leia)

m “Luke has a father.”:

= 3z . isFatherOf (x, Luke)

m “Luke has a father and Leia also has a father.”:

E (3x . isFatherOf (z, Luke)) A (y . isFatherOf (y, Leia))

m “Luke and Leia have the same father!”:

= Jx . isFatherOf (z, Luke) A isFatherOf (z, Leia)

Lecture 5 First-Order Logic IAM'19 5/26

First-Order Logic — Examples

m “There is a person who does not have a father.”:

E Jz —3y. isFatherOf (y, x)
(& E JaVy. ~isFatherOf (y,z))

m “All children of a Jedi are Jedis.”:

Va,y. (isJedi(y)A(isFatherOf (y, x)VisMotherOf (y, x))) — isJedi(x)

v

Lecture 5 First-Order Logic IAM'19 6/26

First-Order Logic — Examples

m There are infinitely many primes [Euclid, c. 300 BC]

VacEIy.y>x/\(Vz. (1<z/\z<y)%ym0dz7§0)

m Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

Vn,z,y eN.n>2 — (-JzeN. z"+y"=2")

m Goldbach Conjecture [Goldbach, 1742] (open as of 2017)

V. (x> 2 A even(z)) =3y, z . prime(y) A prime(z) Nz =y + 2)

v

m Weak Goldbach Conjecture (proven in [Helfgott, 2013])

Vx. (x > 5 A odd(z)) —
(Fy, z, w. prime(y) A prime(z) A prime(w) Az =y + z + w)

v

Lecture 5 First-Order Logic IAM'19 7/26

First-Order Logic — Examples
What is NOT expressible with FOL:

m “Elendil is an ancestor of Aragorn.” (using isParentOf)
Attempts:

» 3z1,..., 2, . isParentOf (z1, Aragorn) A. .. AisParentOf (Elendil, x.,)
_ [n is bounded]
» 3INX . Aragorn € X A Elendil € X A (Vy € X.

(3z . isFatherOf (z,y) A z € X) V y = Elendil)
[3i" — second-order finite quantification, cf. MSO]
> isAncestorOf (z,y) & isParentOf (z,y) V

(3z . isAncestorOf (z, z) A isParentOf (z,y))
[recursive predicate, cf. PROLOG]

m “Anakin is more likely than Gandalf the father of Luke.”
Attempts:

> ?1$#dk*#R&Q

v

Lecture 5 First-Order Logic IAM'19 8/26

Syntax:

Syntax

m Alphabet:

>

>
>
>

logical connectives: =, A, V, —, <>, (--+) (from PL)
variables: x,y,...,x1,za, ... (hold elements of a universe)
quantifiers: v, 3

function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, 7 /0,
42/0, (+1)/1, ...
® nullary functions (arity 0): constants
® to be used as, e.g., f(a,3), +(40,2), sin(+1(x)), fatherOf (Luke), m()
* we often simplify the notation: +(40,2) — 40 + 2, n() — =,
+l(z)—z+1,...
predicate symbols (with /arity): p/3, =/2, isFatherOf /2, (= 0)/1,
isJedi/1, </2, ...
® to be used as, e.g., p(a, z,9), = (x,42), isFatherOf (Anakin, Luke),
(= 0)(z), tsJedi(Anakin), < (x,)
® we often simplify the notation: = (z,42) — = = 42, (= 0)(z) — = =0,
<(z,m)—z<m,...

m Signature = function symbols + predicate symbols

>
>

can be seen as a parameter of an instance of FOL
sometimes called vocabulary or language of FOL

Lecture 5 First-Order Logic IAM'19 9/26

Syntax

Syntax:
m Grammar:
> term: tu=ux occurrence of a variable z € X
| f(t1,...,t,) where f/nis afunction symbol
» formula:
pu=p(t1, ..., tn) where p/n is a predicate symbol

| LIT[~ele1Ae2 o1Vl pr—=pa|eierpe PL
| 3x. ¢ exists, existential quantification
| Va. ¢ for all, universal quantification

V. p(z, £(3)) = Jy. q(y, F(f(f(2))))

m Precedence
» PL connectives: as for PL
> quantifiers: lowest—the scope of a quantifier extends to the right

Lecture 5 First-Order Logic IAM'19 10/26

Syntax — Variables
Variables in formulae:
m bound: occur in the scope of a quantifier
> eg. bound(Jz. x =4 A -(y =5)) = {z}
m free: there is an occurrence not bound by any quantifier
> e.g. free(x =4AN(Jy.y=5)) ={z}
m a variable can occur both bound and free in a formula

V. p(f(z),y) = Yy. p(f(z),y)

» 1z only occurs bound

» 4y occurs both free (antecedent) and bound (consequent)

m we often write p(z1,...,x,) when free(p) C {x1,..., 25}
> z,...,x, Serve as the “interface” of ¢

m ¢ is ground (or closed) if free(y) = 0

Lecture 5 First-Order Logic IAM'19 11/26

Semantics
Semantics of FOL.:
m so far, the symbols did not have any meaning!
m more complicated than for PL
Interpretation I = (D, ay): provides the meaning to the symbols
m domain (universe) of discourse D;: a non-empty set of elements
> e.g., N, {0,1,2,3,4}, R3, People, List|N], %, ...
m assignment a;: "
—
> for every function symbol f/n, a function f;: Dy x ... x Dy — Dy
° eg., (+)={(0,0)—0,(0,1) = 1,(1,0) = 1,(1,1) = 2,...}
® e.g., fatherOf = {Luke — Anakin, KyloRen — HanSolo, ...}
e for constants, this gives us one value, e.g., 7 = {() — 3.1415926. . .}

—_——fN—
> for every predicate symbol p/n, a relation p;y C Dy x ... x Dy
® e.g., isJedi = { Luke, Anakin, Yoda, ObiWan, ...}
° eg., (<) ={(0,1),(0,2),(1,2),...}
* eg. (=0)={0}
® e.g., isFatherOf = {(Anakin, Luke), (HanSolo, KyloRen), ...}
» for every variable x € X a value from Dy, e.g., {z — 42,y — 0}

Lecture 5 First-Order Logic IAM'19 12/26

Semantics
Truth value: inductive definition:
mbasecases: I =T, WKL

Evaluate nested terms recursively

arlf(ti,. ..)] E arlfl(asltsl, arlta])

Then: I Ep(t,..., tn) iff arlpl(ar[ti], ..., arts])
m logical connectives (same as for PL):
I=— iff I}~ o)
I)Zipl/\’(pg |ffI):1/11andI):w2
I)Z?,blV’g/}Q |ffI):w10rI|:¢2
I)Zi/)l—>1[)2 iff,ifI):@DlthenI):l/Jg
I):Q[q(—)?,/)g iffI':’L,bland[):¢2,0rlb&¢1and1b&w2
m quantifiers: let I «{z — v} denote an interpretation obtained from
I by substituting « —? by z — v in ay (I <{z — v} is a variant)
I =Vz. ¢ iffforallv e Dywehave I<{z — v} =

I |=3z. ¢ iff there exists v € Dy suchthat I<{z +— v} = ¢
® Question: we no more have Boolean variables! Is that a problem?

Lecture 5 First-Order Logic IAM'19 13/26

Semantics — Examples

Consider the signature ({(+)/2},{(=)/2})
m Addition in N: I = (N, ay) where
> ar(+) = (+n)
> aj(=)={(n,n)[n e N}
> (=) is often considered an “inbuilt” predicate of FOL (regardless of
the signature) with the standard meaning (identity)

m Addition in R3: T = (R3, a;) where
> ar(+) = {((z1,91,21), (22,42, 22)) = (21 + T2, 91 + 2,21 + 22)}
m Disjunction in Boolean algebra: I = ({0,1}, oy)
> ar(+)=V
m Least common male-ancestor: I = (People, ar) Where
> a;(+) = {(a,b) — c| isFatherOf*(c,a) A isFatherOf*(c,b) A
Vz. (isFatherOf*(z,a) A isFatherOf*(z,b)) — isFatherOf*(z,¢)}
> e.g., Aragorn + Arwen = Edrendil
m Modular addition in {0,1,2,3}: I = ({0,1,2,3},as) where
> a;(+)={(z,y) —» x+y mod 4}

Lecture 5 First-Order Logic IAM'19 14/26

Satisfiability and Validity

m similar as for PL

4
>

satisfiability: is there an interpretation I such that I = ¢?
(logical) validity: does it for all interpretations I hold that I = ¢?

m technically, only applies to ground formulae; convention:

>
>

satisfiability of ¢ ~~ satisfiability of 3free(y). ¢ (existential closure)
validity of ¢ ~~ validity of Vfree(y). ¢ (universal closure)

m Important:

>

>

>

4
>

note that an interpretation now also talks about the meaning of
function and predicate symbols

therefore, a formula is valid (resp. satisfiable) in FOL if it holds for
all interpretations of function and predicate symbols

later, we will introduce T -validity and T -satisfiability

T is a theory (provides axioms)

then, the interpretations of ¢ need to satisfy those

Lecture 5 First-Order Logic IAM'19 15/26

Semantic Argument for FOL
To decide validity of FOL formulae, we extend the semantic argument
method from PL using the following proof rules:

. I IEVz. ¢
m universal quantification 1: for any v
I<{z—v}Ep
I |~ 3z
m existential quantification 1: £ 3w for any v

I<{z— v}l
In practice, we often choose v that was already introduced earlier.

. I I~V @
m universal quantification 2: for a fresh v
I<{z—v}lEp
I 3z,
m existential quantification 2: =3rp for a fresh v

I<{z—v} k=
The value v cannot have been used in the proof before.

The values v are not interpreted; they are symbolic nhames.

Lecture 5 First-Order Logic IAM'19 16/26

Semantic Argument for FOL

m contradiction:

J:I<a--E=p(siy...,sn)
K:IT<a---FEp(t,... ty)
=1L

forl <i<mn:ay[s;] = axlt]

Lecture 5 First-Order Logic

Substitution
Substitution
m again, more involved than for PL (because of quantifiers)
®m Renaming: Let ¢ = V. ¥)(z). The renaming of x to a fresh
variable 2’ in ¢ is the formula [z /2’| = Va'. ¢ (2').
m Substitution: mapping from formulae to formulae

U:{FlHGl,.‘.,FnHGn}

m Safe substitution: Fo
» for each quantified variable z in F' that also occurs free in o,
rename z to a fresh variable x’ to produce F’
® the reason is to avoid binding previously free variables

» compute F'o

Proposition (Substitution of Equivalent Formulae)

If, given o, for each i it holds that F; < G;, then F < Fo
where Fo is computed as a safe substitution.

Lecture 5 First-Order Logic IAM'19 18/26

Useful Equivalences

Vx. —p

Jx. =

(V. o(2)) A (Vy. ¥ (y))
(3. (2)) v (3y. ()
V. ¢

Jx.

V. oV

Jx. o AY

I N

—3Jx.
V.
V. p(x) Aip(x)
. p(x) V()

(Vz. o) VY
(Fz. o) N Y

Lecture 5 First-Order Logic

IAM'19

19/26

Normal Forms (NNF)

Negation Normal Form (NNF):
m similar as for PL
m contains only A, Vv, =, 3, and V as connectives
m — appears only in front of predicates

Let
F:-3n,z,yn>2 A Fz.2"+y"=2".

The formula

G:Vn,z,y.-(n>2) V Vz.=(@"+y"=2")

is equivalent to F' and is in NNF.

Lecture 5 First-Order Logic IAM'19 20/26

Normal Forms (PNF)

Prenex Normal Form (PNF):
m formula is of the form

e=0Q121Qunxn . Y(T1, . Tn, Y1y Ym)

/

prefix matrix

where Q; € {V,3} and v is quantifier-free; {y1,...,yn} are the
free variables of ¢

Let
G:Vn,x,y.-(n>2) V Vz.-o(z"4+y" =2").
The formula

H:Vn,z,y,z.-(n>2) VvV =(z"+y"=2")

is equivalent to G and is in PNF.

Lecture 5 First-Order Logic IAM'19 21/26

Normal Forms (DNF, CNF)

m disjunctive normal form (DNF): PNF where matrix is in DNF

m conjuctive normal form (CNF): PNF where matrix is in CNF

Lecture 5 First-Order Logic IAM'19 22/26

Soundness and Completeness

Soundness . -
m a proof method is sound if it never proves a wrong formula:

Fe = Fo
F : ¢ is provable

The semantic argument is sound. I
Completeness

m a proof method is complete if it can prove every valid formula:
Fe = Fo

The semantic argument is complete. I

There are also other sound and complete methods for FOL (e.g.
natural deduction, Hilbert system).

Lecture 5 First-Order Logic IAM'19 23/26

Craig Interpolation Lemma

Theorem (Craig Interpolation Lemma (Craig, 1957))

If = ¢ — 1, then there exists a formula x such that = ¢ — x
and = x — v and whose predicates and free variables occur
in both ¢ and 1.

Lecture 5 First-Order Logic IAM'19 24/26

Notes

m Exists exactly one:
ANz p(z) & FJz.plx) AVy. ply) —x=y

where y is not free in ¢

m many-sorted logics:

> capture the natural requirement to distinguish types of variables
> eg.in
Yw € X . safe(w) — #:¢(w) = #ry (w)

Lecture 5 First-Order Logic IAM'19 25/26

References

[A.R. Bradley and Z. Manna. The Calculus of Computation.]

Lecture 5 First-Order Logic

	First-Order Logic — Examples

