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First-Order Logic
First-Order Logic (FOL)

also called (first-order) predicate logic, predicate calculus, . . .

generalizes propositional logic by
I interpreting (“looking inside”) propositions
I talks about elements of a universe—denoted by terms formed from

variables, constants, and functions
• e.g., x, 5, f(x, 2), +(40, 2) [= 40 + 2], fatherOf (motherOf (x)),

head("abc"), sin(y), . . .

I propositions are substituted with predicates over terms
• e.g., x = y, even(x), p(x, y, z), isFatherOf (x, y), . . .

I introducing quantifiers to express existential or universal properties
about elements of the universe (first-order quantification)
• ∀, ∃

much more expressive than propositional logic!
I therefore, also more complex (in general undecidable)
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First-Order Logic — Examples

What is expressible in FOL? (informal examples)

SPOILER ALERT!

“All men are mortal. Socrates is a man. Therefore Socrates is mortal.”

|=
(
(∀x. man(x)→mortal(x)) ∧man(Socrates)

)
→mortal(Socrates)

“All men are mortal. Elvis is immortal. Therefore Elvis is not a man.”

|=
(
(∀x. man(x)→mortal(x)) ∧ ¬mortal(Elvis)

)
→¬man(Elvis)
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First-Order Logic — Examples

“Luke is a Jedi.”:
|= isJedi(Luke)

“Anakin is the father of Luke.”:

|= isFatherOf (Anakin,Luke) or
|= Anakin = fatherOf (Luke)

also means “Luke is a son of Anakin.”

“Gandalf is not the father of Luke.”:

|= ¬isFatherOf (Gandalf ,Luke) or
|= ¬(Gandalf = fatherOf (Luke))(
⇔ |= Gandalf 6= fatherOf (Luke)

)
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First-Order Logic — Examples

“Anakin is the father of Luke and Leia.”:

|= isFatherOf (Anakin,Luke) ∧ isFatherOf (Anakin,Leia)

“Luke has a father.”:

|= ∃x . isFatherOf (x,Luke)

“Luke has a father and Leia also has a father.”:

|= (∃x . isFatherOf (x,Luke)) ∧ (∃y . isFatherOf (y,Leia))

“Luke and Leia have the same father!”:

|= ∃x . isFatherOf (x,Luke) ∧ isFatherOf (x,Leia)
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First-Order Logic — Examples

“There is a person who does not have a father.”:

|= ∃x ¬∃y. isFatherOf (y, x)(
⇔ |= ∃x∀y. ¬isFatherOf (y, x)

)
“All children of a Jedi are Jedis.”:

∀x, y.
(
isJedi(y)∧(isFatherOf (y, x)∨isMotherOf (y, x))

)
→ isJedi(x)
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First-Order Logic — Examples
There are infinitely many primes [Euclid, c. 300 BC]

∀x∃y. y > x ∧
(
∀z. (1 < z ∧ z < y)→ ymod z 6= 0

)
Last Fermat’s Theorem [Fermat, 1637] (proven in [Wiles, 1994])

∀n, x, y ∈ N. n > 2 → (¬∃z ∈ N. xn + yn = zn)

Goldbach Conjecture [Goldbach, 1742] (open as of 2017)

∀x. (x > 2 ∧ even(x))→(∃y, z . prime(y) ∧ prime(z) ∧ x = y + z)

Weak Goldbach Conjecture (proven in [Helfgott, 2013])

∀x. (x > 5 ∧ odd(x))→
(∃y, z, w. prime(y) ∧ prime(z) ∧ prime(w) ∧ x = y + z + w)
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First-Order Logic — Examples
What is NOT expressible with FOL:

“Elendil is an ancestor of Aragorn.” (using isParentOf )
Attempts:
I ∃x1, . . . , xn . isParentOf (x1,Aragorn)∧ . . .∧ isParentOf (Elendil , xn)

[n is bounded]
I ∃fin

2 X . Aragorn ∈ X ∧ Elendil ∈ X ∧
(
∀y ∈ X.

(∃z . isFatherOf (z, y) ∧ z ∈ X) ∨ y = Elendil
)

[∃fin
2 — second-order finite quantification, cf. MSO]

I isAncestorOf (x, y)
def⇔ isParentOf (x, y) ∨(
∃z . isAncestorOf (x, z) ∧ isParentOf (z, y)

)
[recursive predicate, cf. PROLOG]

“Anakin is more likely than Gandalf the father of Luke.”
Attempts:
I ?!$#dk*#R&Q
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Syntax
Syntax:

Alphabet:
I logical connectives: ¬,∧,∨,→,↔, (· · · ) (from PL)
I variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)
I quantifiers: ∀,∃
I function symbols (with /arity): f/2, (+)/2, sin /1, fatherOf /1, π/0,

42/0, (+1)/1, . . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(+1(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π,

+1(x) 7→ x+ 1, . . .
I predicate symbols (with /arity): p/3, =/2, isFatherOf /2, (= 0)/1,

isJedi/1, </2, . . .
• to be used as, e.g., p(a, x, 9), = (x, 42), isFatherOf (Anakin,Luke),

(= 0)(x), isJedi(Anakin), < (x, π)
• we often simplify the notation: = (x, 42) 7→ x = 42, (= 0)(x) 7→ x = 0,
< (x, π) 7→ x < π, . . .

Signature = function symbols + predicate symbols
I can be seen as a parameter of an instance of FOL
I sometimes called vocabulary or language of FOL
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Syntax
Syntax:

Grammar:
I term: t ::= x occurrence of a variable x ∈ X

| f(t1, . . . , tn) where f/n is a function symbol
I formula:

ϕ ::= p(t1, . . . , tn) where p/n is a predicate symbol
| ⊥ | > | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1→ϕ2 | ϕ1↔ϕ2 PL
| ∃x. ϕ exists, existential quantification
| ∀x. ϕ for all, universal quantification

Example

∀x. p(x, f(3))→∃y. q(y, f(f(f(z))))

Precedence
I PL connectives: as for PL
I quantifiers: lowest—the scope of a quantifier extends to the right
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Syntax — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
I e.g. bound(∃x. x = 4 ∧ ¬(y = 5)) = {x}

free: there is an occurrence not bound by any quantifier
I e.g. free(x = 4 ∧ (∃y. y = 5)) = {x}

a variable can occur both bound and free in a formula

Example

∀x. p(f(x), y)→∀y. p(f(x), y)

I x only occurs bound

I y occurs both free (antecedent) and bound (consequent)

we often write ϕ(x1, . . . , xn) when free(ϕ) ⊆ {x1, . . . , xn}
I x1, . . . , xn serve as the “interface” of ϕ

ϕ is ground (or closed) if free(ϕ) = ∅
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Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
more complicated than for PL

Interpretation I = (DI , αI): provides the meaning to the symbols
domain (universe) of discourse DI : a non-empty set of elements
I e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment αI :
I for every function symbol f/n, a function fI :

n︷ ︸︸ ︷
DI × . . .×DI → DI

• e.g., (+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• e.g., fatherOf = {Luke 7→ Anakin,KyloRen 7→ HanSolo, . . .}
• for constants, this gives us one value, e.g., π = {() 7→ 3.1415926 . . .}

I for every predicate symbol p/n, a relation pI ⊆
n︷ ︸︸ ︷

DI × . . .×DI
• e.g., isJedi = {Luke,Anakin,Yoda,ObiWan, . . .}
• e.g., (<) = {(0, 1), (0, 2), (1, 2), . . .}
• e.g., (= 0) = {0}
• e.g., isFatherOf = {(Anakin,Luke), (HanSolo,KyloRen), . . .}

I for every variable x ∈ X a value from DI , e.g., {x 7→ 42, y 7→ 0}
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Semantics
Truth value: inductive definition:

base cases: I |= >, I 6|= ⊥
Evaluate nested terms recursively

αI [f(t1, . . . , tn)]
def
= αI [f ](αI [t1], . . . , αI [tn])

Then: I |= p(t1, . . . , tn) iff αI [p](αI [t1], . . . , αI [tn])

logical connectives (same as for PL):
I |= ¬ψ iff I 6|= ψ
I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2

I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2

I |= ψ1→ψ2 iff, if I |= ψ1 then I |= ψ2

I |= ψ1↔ψ2 iff I |= ψ1 and I |= ψ2, or I 6|= ψ1 and I 6|= ψ2

quantifiers: let I / {x 7→ v} denote an interpretation obtained from
I by substituting x 7→? by x 7→ v in αI (I / {x 7→ v} is a variant)
I |= ∀x. ϕ iff for all v ∈ DI we have I / {x 7→ v} |= ϕ
I |= ∃x. ϕ iff there exists v ∈ DI such that I / {x 7→ v} |= ϕ

Question: we no more have Boolean variables! Is that a problem?
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Semantics — Examples
Consider the signature ({(+)/2}, {(=)/2})

Addition in N: I = (N, αI) where
I αI(+) = (+N)
I αI(=) = {(n, n) | n ∈ N}
I (=) is often considered an “inbuilt” predicate of FOL (regardless of

the signature) with the standard meaning (identity)
Addition in R3: I = (R3, αI) where
I αI(+) = {((x1, y1, z1), (x2, y2, z2)) 7→ (x1 + x2, y1 + y2, z1 + z2)}

Disjunction in Boolean algebra: I = ({0, 1}, αI)
I αI(+) = ∨

Least common male-ancestor: I = (People, αI) where
I αI(+) = {(a, b) 7→ c | isFatherOf ∗(c, a) ∧ isFatherOf ∗(c, b) ∧
∀z. (isFatherOf ∗(z, a) ∧ isFatherOf ∗(z, b))→ isFatherOf ∗(z, c)}

I e.g., Aragorn + Arwen = Eärendil

Modular addition in {0, 1, 2, 3}: I = ({0, 1, 2, 3}, αI) where
I αI(+) = {(x, y) 7→ x+ y mod 4}
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Satisfiability and Validity

similar as for PL
I satisfiability: is there an interpretation I such that I |= ϕ?
I (logical) validity: does it for all interpretations I hold that I |= ϕ?

technically, only applies to ground formulae; convention:
I satisfiability of ϕ satisfiability of ∃free(ϕ). ϕ (existential closure)
I validity of ϕ validity of ∀free(ϕ). ϕ (universal closure)

Important:
I note that an interpretation now also talks about the meaning of

function and predicate symbols
I therefore, a formula is valid (resp. satisfiable) in FOL if it holds for

all interpretations of function and predicate symbols
I later, we will introduce T -validity and T -satisfiability
I T is a theory (provides axioms)
I then, the interpretations of ϕ need to satisfy those
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Semantic Argument for FOL
To decide validity of FOL formulae, we extend the semantic argument
method from PL using the following proof rules:

universal quantification 1:
I |= ∀x. ϕ

I / {x 7→ v} |= ϕ
for any v

existential quantification 1:
I 6|= ∃x. ϕ

I / {x 7→ v} 6|= ϕ
for any v

In practice, we often choose v that was already introduced earlier.

universal quantification 2:
I 6|= ∀x. ϕ

I / {x 7→ v} 6|= ϕ
for a fresh v

existential quantification 2:
I |= ∃x. ϕ

I / {x 7→ v} |= ϕ
for a fresh v

The value v cannot have been used in the proof before.

The values v are not interpreted; they are symbolic names.
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Semantic Argument for FOL

contradiction:

J : I / · · · |= p(s1, . . . , sn)
K : I / · · · 6|= p(t1, . . . , tn)

I |= ⊥
for 1 ≤ i ≤ n : αJ [si] = αK [ti]
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Substitution
Substitution

again, more involved than for PL (because of quantifiers)
Renaming: Let ϕ = ∀x. ψ(x). The renaming of x to a fresh
variable x′ in ϕ is the formula ϕ[x/x′] = ∀x′. ψ(x′).
Substitution: mapping from formulae to formulae

σ : {F1 7→ G1, . . . , Fn 7→ Gn}

Safe substitution: Fσ
I for each quantified variable x in F that also occurs free in σ,

rename x to a fresh variable x′ to produce F ′
• the reason is to avoid binding previously free variables

I compute F ′σ

Proposition (Substitution of Equivalent Formulae)
If, given σ, for each i it holds that Fi⇔Gi, then F ⇔Fσ
where Fσ is computed as a safe substitution.
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Useful Equivalences

∀x. ¬ϕ ⇔ ¬∃x. ϕ
∃x. ¬ϕ ⇔ ¬∀x. ϕ

(∀x. ϕ(x)) ∧ (∀y. ψ(y)) ⇔ ∀x. ϕ(x) ∧ ψ(x) if x /∈ free(ψ)

(∃x. ϕ(x)) ∨ (∃y. ψ(y)) ⇔ ∃x. ϕ(x) ∨ ψ(x) if x /∈ free(ψ)

∀x. ϕ ⇔ ϕ if x /∈ free(ϕ)

∃x. ϕ ⇔ ϕ if x /∈ free(ϕ)

∀x. ϕ ∨ ψ ⇔ (∀x. ϕ) ∨ ψ if x /∈ free(ψ)

∃x. ϕ ∧ ψ ⇔ (∃x. ϕ) ∧ ψ if x /∈ free(ψ)
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Normal Forms (NNF)

Negation Normal Form (NNF):
similar as for PL
contains only ∧, ∨, ¬, ∃, and ∀ as connectives
¬ appears only in front of predicates

Example
Let

F : ¬∃n, x, y. n > 2 ∧ ∃z. xn + yn = zn.

The formula

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn)

is equivalent to F and is in NNF.
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Normal Forms (PNF)
Prenex Normal Form (PNF):

formula is of the form

ϕ = Q1x1 . . . . Qnxn︸ ︷︷ ︸
prefix

. ψ(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸
matrix

where Qi ∈ {∀,∃} and ψ is quantifier-free; {y1, . . . , ym} are the
free variables of ϕ

Example
Let

G : ∀n, x, y . ¬(n > 2) ∨ ∀z . ¬(xn + yn = zn).

The formula

H : ∀n, x, y, z . ¬(n > 2) ∨ ¬(xn + yn = zn)

is equivalent to G and is in PNF.
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Normal Forms (DNF, CNF)

disjunctive normal form (DNF): PNF where matrix is in DNF

conjuctive normal form (CNF): PNF where matrix is in CNF
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Soundness and Completeness
Soundness

a proof method is sound if it never proves a wrong formula:

` ϕ ⇒ |= ϕ

` ϕ: ϕ is provable

Theorem
The semantic argument is sound.

Completeness
a proof method is complete if it can prove every valid formula:

|= ϕ ⇒ ` ϕ

Theorem
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g.
natural deduction, Hilbert system).
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Craig Interpolation Lemma

Theorem (Craig Interpolation Lemma (Craig, 1957))
If |= ϕ→ψ, then there exists a formula χ such that |= ϕ→χ
and |= χ→ψ and whose predicates and free variables occur
in both ϕ and ψ.
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Notes

Exists exactly one:

∃!x. ϕ(x) ⇔ ∃x. ϕ(x) ∧ ∀y. ϕ(y)→x = y

where y is not free in ϕ

many-sorted logics:
I capture the natural requirement to distinguish types of variables
I e.g. in

∀w ∈ Σ∗ . safe(w)→#′(′(w) = #′)′(w)
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