
Lecture 1 — Propositional Logic

Ondřej Lengál

Faculty of Information Technology
Brno University of Technology

IAM’19

Logic

What is (formal) logic?
Logic can be considered as a branch of mathematics that studies
universal principles of correct reasoning in various formal systems.

“[Logic is] . . . the name of a discipline that analyzes the mean-
ing of the concepts common to all the sciences, and estab-
lishes the general laws governing the concepts.”

—Alfred Tarski

“To discover truths is the task of all sciences; it falls to logic
to discern the laws of truth. . . . I assign to logic the task of
discovering the laws of truth, not of assertion or thought.”

—Gottlob Frege

Lecture 1 Propositional Logic IAM’19 2 / 47

A Brief History of Logic

pre-Aristotle
Zeno of Elea (490–430 BCE)
I paradoxes: Achilles and the tortoise, arrow paradox, . . .
I reductio ad absurdum = proof by contradiction

Euclid (325–270 BCE)
I (Elements—geometry) proofs follow axioms in a formal way
I (as opposed to empirical methods)

Socrates, Plato, Parmenides, . . .
Liar Paradox (Eubulides)

This statement is false.

Lecture 1 Propositional Logic IAM’19 3 / 47

A Brief History of Logic

Aristotle (384–322 BCE)
The Father of Logic
Organon: works on logic
formal term logic (predec. of predicate logic)
syllogisms to infer conclusions:

Example (Modus Barbara)
All men are mortal.
Socrates is a man.

∴ Socrates is mortal.

Example (Modus Calemes)
All men are mortal.
Elvis is immortal.

∴ Elvis is not a man.

Lecture 1 Propositional Logic IAM’19 4 / 47

A Brief History of Logic

Gottfried Wilhelm Leibniz (1646–1716)
attempts to mechanise reasoning using
universal calculus
I “Calculemus!” (Let us calculate!)

George Boole (1815–1864)
indirect successor of Leibniz
invents Boolean algebra (propositional logic)
logical propositions as algebraic equations
 logic can be reduced to algebra

Lecture 1 Propositional Logic IAM’19 5 / 47

A Brief History of Logic
Gottlob Frege (1848–1925)

Begriffsschrift (1879)
rigorous formal language, quantifiers, variables
shift from “logic for calculation” (Boole) to “logic
to model reality”

The Foundations of Arithmetic (Die Grundlagen der Arithmetik)
found inconsistent (Russell’s Paradox)
I just as the 2nd volume of Foundations was about to go to press

Lecture 1 Propositional Logic IAM’19 6 / 47

A Brief History of Logic
Foundational crisis in mathematics (early 20th century)

many paradoxes occurring in foundations of mathematics:
I |N| 6= |R| (Cantor, 1873)
I Russell’s paradox (1901)
I Berry Paradox
I Richard’s Paradox
I Banach-Tarski paradox (1924)
I . . .

Henri Poincaré (Rome, 1908):
I “Later generations will regard Mengenlehre [set theory] as a

disease from which one has recovered.”
David Hilbert (1926):
I “No one shall expel us from the Paradise that Cantor has created.”

Main approaches:
I Formalism (Hilbert’s programme)

• ground all theories on a finite, complete set of axioms, and prove they
are consistent

I Intuitionism (constructive nature)
• Brouwer, Kleene, . . .
• Poincaré: “Logic remains barren unless fertilized by intuition.”

Lecture 1 Propositional Logic IAM’19 7 / 47

A Brief History of Logic
Bertrand Russell (1872–1970)

Russell’s Paradox (1901)
I Let S = {x | x /∈ x}. Does S ∈ S?

Principia Mathematica (1910–13)
I with A. Whitehead
I foundations of mathematics

• sets (using type theory) and logic
I goal: forbid self-reference
I takes 362 pages to prove 1 + 1 = 2:

Ludwig Wittgenstein (student): Tractatus Logico-Philosophicus
Lecture 1 Propositional Logic IAM’19 8 / 47

A Brief History of Logic
David Hilbert (1862–1943)

Hilbert’s problems (1900):
I 23 open problems presented at a conference in

Paris as challenges for the 20th century
I #1: Continuum hypothesis (2ℵ0

?
= ℵ1)

I #2: Are axioms of arithmetic consistent?
I “In mathematics there is no ignorabimus.”

• “Ignoramus et ignorabimus.” (Bois-Reymond,
on the limits of scientific knowledge)

Hilbert’s programme (started in 1920’s):
I formalisation of all mathematics using finite number of axioms,

which can be manipulated using well-defined rules (formula game)
I completeness: all truths are provable
I consistency: no falsehood is provable
I conservation: if a result can be obtained using “ideal objects” (e.g.

uncountable sets), it can also be obtained using “real objects”
I decidability: algorithm for deciding validity (Entscheidungsproblem)

“We must know — we shall know!”
Lecture 1 Propositional Logic IAM’19 9 / 47

A Brief History of Logic

Kurt Gödel (1906–1978)
born in Brno (Pekařská 3)
member of Vienna circle (moved there in 1924)
I making philosophy scientific with the help of

modern logic
I unified science

1929: Gödels completeness theorem
I Every theorem of FOL is provable.

1931: Gödel’s incompleteness theorem (lecture 3)
I Every sufficiently strong consistent formal system is incomplete.

• incomplete = there exist unprovable statements
I Gödel effectively encoded the formal system of Principia

Mathematica into number theory, thus creating self-reference
I Destroys Hilbert’s programme

• John von Neumann’s reaction: “It’s all over.”

Lecture 1 Propositional Logic IAM’19 10 / 47

A Brief History of Logic

Alan Turing (1912–1954)
Father of Computer Science
1936: solves Entscheidungsproblem
I defines the Turing machine as a formal notion

of an algorithm
I there is no algorithm that decides validity of

FOL statements (diagonalization argument)
I final blow to Hilbert’s programme
I also solved by Alonzo Church (λ-calculus)

WW2: helps to break Enigma

1950: Turing test
I can be used to evaluate maturity of artificial intelligence

Lecture 1 Propositional Logic IAM’19 11 / 47

A Brief History of Logic

Current status
Mathematicians don’t really care about formal logic
Logic is the basis of computer science

“Computer science is the continuation
of logic by other means.”

—Georg Gottlob, 2007

incompleteness & undecidability
I real problems in analysis of programs

Lecture 1 Propositional Logic IAM’19 12 / 47

Literature

https://wiki.lesswrong.com/wiki/Highly_Advanced_
Epistemology_101_for_Beginners

Lecture 1 Propositional Logic IAM’19 13 / 47

https://wiki.lesswrong.com/wiki/Highly_Advanced_Epistemology_101_for_Beginners
https://wiki.lesswrong.com/wiki/Highly_Advanced_Epistemology_101_for_Beginners

Formal systems

A formal system consists of
alphabet: contains symbols
grammar: rules for constructing well-formed formulae (wff)
axioms/axiom schemata: contain wff
inference rules

Lecture 1 Propositional Logic IAM’19 14 / 47

Logic
Division of logics:

classical
non-classical — examples:
I intuitionistic logic: no LEM, DNE, DeML
I many-valued logic: not only true/false (e.g. fuzzy logic)

According to allowed values of variables
propositional logic (PL): true/false
first-order predicate logic (FOL): an element of the universe
second-order logic: a relation on the universe
I monadic second-order logic (MSO): unary relation (i.e. sets) only

. . .

Extensions:
modal logic, temporal logic, dynamic logic, . . .

Lecture 1 Propositional Logic IAM’19 15 / 47

Formal systems in CS

In CS, logics are studied from the point of view of:
decidability: can we, for any formula ϕ in F , decide if |=F ϕ?
I decidable logics, e.g.

• propositional logic (PL),
• fragments of first-order logic (FOL): e.g. Presburger arithmetic (N,+)
• fragments of second-order logic: e.g. MSO(Str), WSkS

I undecidable logics (cf. Gödel’s incompleteness theorems), e.g.
• general first-order logic: enough if contains Peano arithmetic (N,+, ·)
• general second-order logic: enough if contains Presburger arithmetic

For decidable logics, we study their
decision procedures: algorithms that decide whether |=F ϕ

complexity: how difficult is it to decide validity?
expressivity: what is expressible using the logic?
I higher expressivity ≈ higher complexity

Lecture 1 Propositional Logic IAM’19 16 / 47

Proof Theory vs. Model Theory

Logic itself can be divided into several branches depending on
how we look at formulae:

I syntactically: proof theory
• studies proofs as first-class citizens
• e.g. the semantic argument proof technique introduced later

I semantically: model theory
• focuses on the entities denoted by formulae
• e.g. the decision procedures for Presburger arithmetic
• model: an entity satisfying a formula

Lecture 1 Propositional Logic IAM’19 17 / 47

Logic in Computer Science
An essential knowledge of every SW architect/designer/engineer.
Ubiquitous in CS.
Examples:
I Hardware design: 2-bit multiplexor

out ≡ (in0 ∧ ¬addr) ∨ (in1 ∧ addr) (propositional logic—PL)

I Function contracts: Sorting sorts.

{array(x)}
y = sort(x); (first-order predicate logic—FOL)
{array(y) ∧ ∀0 ≤ i < j < len(y) : y[i] ≤ y[j] ∧ y = perm(x)}

I System specifications: Every request is eventually granted.

�(Req→♦Grt) (linear temporal logic—LTL)

Lecture 1 Propositional Logic IAM’19 18 / 47

Logic in Computer Science
Examples (cont.):
I Reasoning about abstract structures: The node y is reachable from

the node x in the graph G.

reach(x, y) ≡ ∃V ⊆ nodes(G) : x, y ∈ V ∧ ∀a ∈ V :(
a 6= y→∃!b ∈ V : edgeG(a, b)

)
∧(

a 6= x→∃!b ∈ V : edgeG(b, a)
)

(monadic second-order logic on graphs—MSO(Graphs))

I Artificial intelligence, type theory, databases, . . .
Working with logic in CS:
I Propositional logic: SAT (SATisfiability) solvers

• MINISAT, GLUCOSE, LINGELING, . . .
I First-order logic:

• SMT (Satisfiability Modulo Theories) solvers: Z3, CVC4, YICES, . . .
• Theorem provers: COQ, ISABELLE, HOL, . . .

I Second-order logic: specialized solvers: MONA [WSkS], . . .

Lecture 1 Propositional Logic IAM’19 19 / 47

Propositional Logic

Lecture 1 Propositional Logic IAM’19 20 / 47

Propositional Logic

Reasons about propositions
I substituted by propositional variables from the set X = {X,Y, . . .}
I statements that can be either true or false

Propositions are atomic:
I we do not look inside them (we will later, in FOL)
I they have no implicit relation

• relations needs to be given explicitly by PL formulae

Example
Suppose X means “Lisa loves Milhouse.” and Y
means “Lisa loves Nelson.” Without saying
(X→¬Y), we can infer strange facts about Lisa.

Lecture 1 Propositional Logic IAM’19 21 / 47

Propositional Logic — Examples
Example (1)
If the train arrives late and there are no taxis at the station, then John
is late for his date. John is not late for his date. The train did arrive late.
Therefore, there were taxis at the station.

Example (2)
If it is raining and Jane does not have her umbrella with her, then she
will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

Both examples have the same structure:
Example (1) Example (2)

F the train is late it is raining
G there are taxis at the station Jane has her umbrella with her
H John is late for his date Jane is wet

If F and not G, then H. Not H. F . Therefore, G.

((F ∧ ¬G)→H) ∧ (¬H) ∧ (F)→(G)
Lecture 1 Propositional Logic IAM’19 22 / 47

Syntax
ϕ ::= X occurrence of a propositional variable X ∈ X
| ⊥ (0) false
| > (1) true
| ¬ϕ negation, pronounced “not”
| ϕ1 ∧ ϕ2 conjunction, pronounced “and”
| ϕ1 ∨ ϕ2 disjunction, pronounced “or”
| ϕ1→ϕ2 (material) implication, pronounced “implies”
| ϕ1↔ϕ2 iff (material biconditional, equivalence), pronounced

“if and only if”

Example

(A→B)↔ (¬A ∨B)

Precedence is in the same order (¬ > ∧ > ∨ >→ >↔).
I can be enforced using parentheses, e.g. ¬(ϕ ∧ ψ)

Syntax tree of ϕ: a derivation tree of ϕ
Lecture 1 Propositional Logic IAM’19 23 / 47

Semantics

Interpretation I:
I Assigns every variable from X a truth value:

I : X→ {true, false}

e.g. I : {X 7→ true, Y 7→ false, . . .}

Truth value:
I The truth value of ϕ under I is defined inductively using the table

ψ1 ψ2 ¬ψ1 ψ1 ∨ ψ2 ψ1 ∧ ψ2 ψ1→ψ2 ψ1↔ψ2

0 0 1 0 0 1 1
0 1 1 1 0 1 0
1 0 0 1 0 0 0
1 1 0 1 1 1 1

Lecture 1 Propositional Logic IAM’19 24 / 47

Semantics
Truth value (cont.):
I a better notation:

• I |= ϕ: iff ϕ evaluates to true under I
• I 6|= ϕ: iff ϕ evaluates to false under I

I inductive definition:
• base cases: I |= >

I 6|= ⊥
I |= X iff I[X] = > (for X ∈ X)

• inductive steps:
I |= ¬ψ iff I 6|= ψ
I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2

I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2

I |= ψ1→ψ2 iff, if I |= ψ1 then I |= ψ2

I |= ψ1↔ψ2 iff I |= ψ1 and I |= ψ2, or I 6|= ψ1 and I 6|= ψ2

• 6|=: well defined from the previous
I if I |= ψ, we say that I is a model of ψ

Lecture 1 Propositional Logic IAM’19 25 / 47

Semantics
Example
Consider the formula

ϕ = (X ∧ Y)→ (X ∨ ¬Y)

and the interpretation

I = {X 7→ >, Y 7→ ⊥}.

Compute the truth value of ϕ under I as follows:

1. I |= X since I[X] = >
2. I 6|= Y since I[Y] = ⊥
3. I |= ¬Y by 2 and semantics of ¬
4. I 6|= X ∧ Y by 2 and semantics of ∧
5. I |= X ∨ ¬Y by 1 and semantics of ∨
6. I |= ϕ by 4 and semantics of→

Note that we follow the order from simpler to more complex.

Lecture 1 Propositional Logic IAM’19 26 / 47

Semantics
Example
Consider the formula

ϕ = (X ∧ Y)→ (X ∨ ¬Y)

and the interpretation

I = {X 7→ >, Y 7→ ⊥}.

Compute the truth value of ϕ under I as follows:

1. I |= X since I[X] = >
2. I 6|= Y since I[Y] = ⊥
3. I |= ¬Y by 2 and semantics of ¬
4. I 6|= X ∧ Y by 2 and semantics of ∧
5. I |= X ∨ ¬Y by 1 and semantics of ∨
6. I |= ϕ by 4 and semantics of→

Note that we follow the order from simpler to more complex.
Lecture 1 Propositional Logic IAM’19 26 / 47

Satisfiability and Validity
Satisfiability and validity are the key concepts in logic.

Satisfiability: can a formula ϕ be true?
I Is there an interpretation I such that I |= ϕ?

Validity: is a formula ϕ always true?
I Does it for all interpretations I hold that I |= ϕ?
I Denoted as |= ϕ.

I Tautology: a valid formula
I Contradiction: an unsatisfiable formula

Dual concepts:
I ϕ is valid iff ¬ϕ is unsatisfiable
I ϕ is satisfiable iff ¬ϕ is invalid

Checking satisfiability and validity:
I Option 1: construct truth tables
I Option 2: semantic arguments (next slide)
I Options 3–n: natural deduction, resolution, Hilbert system, . . .

Lecture 1 Propositional Logic IAM’19 27 / 47

Satisfiability and Validity
Satisfiability and validity are the key concepts in logic.

Satisfiability: can a formula ϕ be true?
I Is there an interpretation I such that I |= ϕ?

Validity: is a formula ϕ always true?
I Does it for all interpretations I hold that I |= ϕ?
I Denoted as |= ϕ.

I Tautology: a valid formula
I Contradiction: an unsatisfiable formula

Dual concepts:
I ϕ is valid iff ¬ϕ is unsatisfiable
I ϕ is satisfiable iff ¬ϕ is invalid

Checking satisfiability and validity:
I Option 1: construct truth tables
I Option 2: semantic arguments (next slide)
I Options 3–n: natural deduction, resolution, Hilbert system, . . .

Lecture 1 Propositional Logic IAM’19 27 / 47

Semantic Argument
Semantic argument:

a method for establishing validity of a formula
also called analytic tableau, semantic tableau, truth tree, . . .
more complicated than a truth table, but we will also use it for
predicate logic (where truth tables are not applicable)
start by assuming that a formula ϕ is invalid, and show that:
I either all branches lead to a contradiction (then |= ϕ), or
I some branch does not (then 6|= ϕ and there exists a falsifying

interpretation I s.t. I 6|= ϕ)

the proof proceeds by applying proof rules:

premises

deductions

I if all premises hold, we can deduce all deductions.

Lecture 1 Propositional Logic IAM’19 28 / 47

Semantic Argument (proof rules)
negation:

I |= ¬ϕ
I 6|= ϕ

I 6|= ¬ϕ
I |= ϕ

conjunction:

I |= ϕ ∧ ψ
I |= ϕ
I |= ψ

I 6|= ϕ ∧ ψ
I 6|= ϕ | I 6|= ψ

(‘|’ forks computation in
two branches that both
need to be proved)

disjunction:

I |= ϕ ∨ ψ
I |= ϕ | I |= ψ

I 6|= ϕ ∨ ψ
I 6|= ϕ
I 6|= ψ

Lecture 1 Propositional Logic IAM’19 29 / 47

Semantic Argument (proof rules)

implication:

I |= ϕ→ψ

I 6|= ϕ | I |= ψ

I 6|= ϕ→ψ

I |= ϕ
I 6|= ψ

iff:

I |= ϕ↔ψ

I |= ϕ ∧ ψ | I 6|= ϕ ∨ ψ
I 6|= ϕ↔ψ

I |= ϕ ∧ ¬ψ | I |= ¬ϕ ∧ ψ

contradiction:

I |= ϕ I 6|= ϕ

I |= ⊥

Lecture 1 Propositional Logic IAM’19 30 / 47

Semantic Argument (proofs)

In a semantic argument, a proof of ϕ is a sequence of lines.

Example

1. I 6|= ϕ

2. I 6|= ¬P →¬Q
...

The first line is an assumption that ϕ is invalid:

Example

1. I 6|= ϕ (assumption)

Lecture 1 Propositional Logic IAM’19 31 / 47

Semantic Argument (proofs)

Every other line l is obtained as a deduction of a proof rule where
the premise(s) are before l.

Example

...

7. I |= P ∧R . . .

8. I |= P by 7 and semantics of ∧
...

Lecture 1 Propositional Logic IAM’19 32 / 47

Semantic Argument (example)

Example (1)
Prove that the formula ψ : P ∧Q → P ∨ ¬Q is valid.

Solution.
Assume ψ is invalid, i.e., there exists I s.t. I 6|= F . Then,

1. I 6|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of→
3. I 6|= P ∨ ¬Q by 1 and semantics of→
4. I |= P by 2 and semantics of ∧
5. I 6|= P by 2 and semantics of ∨
6. I |= ⊥ from 4 and 5

Lecture 1 Propositional Logic IAM’19 33 / 47

Semantic Argument (example)

Example (1)
Prove that the formula ψ : P ∧Q → P ∨ ¬Q is valid.

Solution.
Assume ψ is invalid, i.e., there exists I s.t. I 6|= F . Then,

1. I 6|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of→
3. I 6|= P ∨ ¬Q by 1 and semantics of→
4. I |= P by 2 and semantics of ∧
5. I 6|= P by 2 and semantics of ∨
6. I |= ⊥ from 4 and 5

Lecture 1 Propositional Logic IAM’19 33 / 47

Semantic Argument (example)

Example (2)
Prove that the formula ψ : (P →Q) ∧ (Q→R)→ (P →R) is valid.

Solution.
Assume ψ is invalid, i.e., there exists I s.t. I 6|= F . Then,

1. I 6|= (P →Q) ∧ (Q→R)→ (P →R) assumption
2. I |= (P →Q) ∧ (Q→R) by 1 and semantics of→
3. I 6|= (P →R) by 1 and semantics of→
4. I |= P by 3 and semantics of→
5. I 6|= R by 3 and semantics of→
6. I |= P →Q by 2 and semantics of ∧
7. I |= Q→R by 2 and semantics of ∧

To discharge 6 and 7, we need to fork the proof.

continue on next slide . . .

Lecture 1 Propositional Logic IAM’19 34 / 47

Semantic Argument (example)

Example (2)
Prove that the formula ψ : (P →Q) ∧ (Q→R)→ (P →R) is valid.

Solution.
Assume ψ is invalid, i.e., there exists I s.t. I 6|= F . Then,

1. I 6|= (P →Q) ∧ (Q→R)→ (P →R) assumption
2. I |= (P →Q) ∧ (Q→R) by 1 and semantics of→
3. I 6|= (P →R) by 1 and semantics of→
4. I |= P by 3 and semantics of→
5. I 6|= R by 3 and semantics of→
6. I |= P →Q by 2 and semantics of ∧
7. I |= Q→R by 2 and semantics of ∧

To discharge 6 and 7, we need to fork the proof.

continue on next slide . . .

Lecture 1 Propositional Logic IAM’19 34 / 47

Semantic Argument (example)
Example (2 cont.)

...
4. I |= P by 3 and semantics of→
5. I 6|= R by 3 and semantics of→
6. I |= P →Q by 2 and semantics of ∧
7. I |= Q→R by 2 and semantics of ∧

First, we discharge 6 by forking into branches ‘a’ and ‘b’:

a8. I 6|= P {6 and→}
a9. I |= ⊥ {4 and a8}

[branch closed]

b8. I |= Q {6 and→}

Then, we discharge 7 by forking the ‘b’ branch into ‘ba’ and ‘bb’:

ba9. I 6|= Q {7 and→}
ba10. I |= ⊥ {b8 and ba9}

[branch closed]

bb9. I |= R {7 and→}
bb10. I |= ⊥ {5 and bb9}

[branch closed]

Lecture 1 Propositional Logic IAM’19 35 / 47

Semantic Argument (modus ponens)

Modus ponens (MP) is the following useful rule:

I |= F I |= F →G

I |= G

MP is sometimes also called implication elimination.

Lecture 1 Propositional Logic IAM’19 36 / 47

Equivalence and Implication
Equivalence and implication are used to talk about pairs of formulae.

(logical) equivalence (⇔):
I F ⇔G if F and G evaluate to the same truth value under all I
I F ⇔G can be proved by showing |= F ↔G

(logical) implication (⇒):
I F ⇒G if for every I: if I |= F then I |= G
I F ⇒G can be proved by showing |= F →G
I also called: logical consequence, entailment
I also denoted: F |= G

What is the difference between F ↔G and F ⇔G?
F ↔G is a formula of PL.
F ⇔G is a statement about formulae F and G. It is not a formula.
I (More precisely, F ⇔G is a statement in the metalanguage that we

use to talk about PL.)

Similarly for F →G and F ⇒G.

Lecture 1 Propositional Logic IAM’19 37 / 47

Useful Equivalences 1

F ⇔ ¬¬F (double negative elimination)
¬> ⇔ ⊥
¬⊥ ⇔ >

¬(F ∧G) ⇔ ¬F ∨ ¬G (De Morgan’s law)
¬(F ∨G) ⇔ ¬F ∧ ¬G (De Morgan’s law)
F →G ⇔ ¬F ∨G
F ↔G ⇔ (F →G) ∧ (G→F)

F ∧ (G ∧H) ⇔ (F ∧G) ∧H (associativity)
F ∨ (G ∨H) ⇔ (F ∨G) ∨H (associativity)
F ∧ (G ∨H) ⇔ (F ∧G) ∨ (F ∧H) (distributivity)
F ∨ (G ∧H) ⇔ (F ∨G) ∧ (F ∨H) (distributivity)

Lecture 1 Propositional Logic IAM’19 38 / 47

Useful Equivalences 2

F →G ⇔ ¬G→¬F (contrapositive, modus tollens)
F → (G→H) ⇔ (F ∧G)→H (exportation)

F ∧ ¬F ⇔ ⊥ (law of noncontradiction)
F ∨ ¬F ⇔ > (law of excluded middle)
F ∨ F ⇔ F (idempotence)
F ∧ F ⇔ F (idempotence)
F ∨ ⊥ ⇔ F

F ∧ > ⇔ F

F ∨ > ⇔ >
F ∧ ⊥ ⇔ ⊥

(F →G) ∧ (F →¬G) ⇔ ¬F

Lecture 1 Propositional Logic IAM’19 39 / 47

Substitution
Substitution σ:

mapping from formulae to formulae σ : {F1 7→ G1, . . . , Fn 7→ Gn}
domain: dom(σ) = {F1, . . . , Fn}, range: rng(σ) = {G1, . . . , Gn}
the formula Fσ is obtained from F by replacing every Fi with Gi

all replacements occur at once
I if there are Fj and Fk such that Fk is a strict subformula of Fj and

Fj occurs in F , then we substitute Fj with Gj

Example
F : P ∧Q → P ∨ ¬Q
σ : {P 7→ R, P ∧Q 7→ P →Q}

Fσ : (P →Q) → R ∨ ¬Q

Proposition (Substitution of Equivalent Formulae)
If, given σ, for each i it holds that Fi⇔Gi, then F ⇔Fσ.

Lecture 1 Propositional Logic IAM’19 40 / 47

Substitution
Variable substitution:

substitution σ such that dom(σ) ⊆ X

Example

σ = {F 7→ J ∧H, G 7→ H→ J}

Proposition
If |= F and σ is a variable substitution, then |= Fσ.

Example
If

|= F → (G→F),

then also

|= (H ∧ I) → ((¬H) → (H ∧ I)).

Lecture 1 Propositional Logic IAM’19 41 / 47

Normal Forms (NNF)

Negation Normal Form (NNF):
contains only ∧, ∨, and ¬ as connectives
¬ appears only in front of variables

Example
Let

F : ¬(P →¬(P ∧Q)).

The formula
G : P ∧Q

is equivalent to F and is in NNF.

Lecture 1 Propositional Logic IAM’19 42 / 47

Normal Forms (DNF)
Disjunctive Normal Form (DNF):

is a disjunction of conjunction of literals:∨
i

∧
j

`i,j

a literal is a variable (X) or its negation (¬X)

Example
Let

F : (P ∨ ¬¬Q) ∧ (R→S).

The formula

G : (P ∧ ¬R) ∨ (P ∧ S) ∨ (Q ∧ ¬R) ∨ (Q ∧ S)

is equivalent to F and is in DNF.

Lecture 1 Propositional Logic IAM’19 43 / 47

Normal Forms (CNF)
Conjunctive Normal Form (CNF):

is a conjunction of disjunction of literals:∧
i

∨
j

`i,j

a disjunction of literals is called a clause

Example
Let

F : (P ∧ ¬¬Q) ∨ (R→S).

The formula

G : (P ∨ ¬R ∨ S) ∧ (Q ∨ ¬R ∨ S)

is equivalent to F and is in CNF.

Lecture 1 Propositional Logic IAM’19 44 / 47

Normal Forms (CNF)

SAT:
the problem of deciding whether a formula in CNF is satisfiable

Proposition
SAT is NP-complete.

NP-complete problems (informally):
I the best algorithm known is exponential
I but if we guess a solution, we can quickly check if it is correct

• e.g., for SAT, if we guess I, we can quickly check whether I |= ϕ

I other examples:
• travelling salesman problem, knapsack, graph colouring, . . .

I often considered not efficiently solvable
I BUT!

• SAT solvers: programs that can quickly solve many real-life instances
• other NP-complete problems are often reduced to SAT

Lecture 1 Propositional Logic IAM’19 45 / 47

Notes

ϕ→ψ is sometimes (in older texts) written as ϕ ⊃ ψ.
In ϕ→ψ, we call ϕ the antecedent and ψ the consequent.

Horn clause: a clause that has at most one positive literal
I often represented in an implication form (cf. PROLOG):

(F ∨ ¬G ∨ ¬H ∨ ¬I) ⇔ F ← (G ∧H ∧ I)

I SAT for Horn clauses (HORNSAT) is linear-time (can you see why?)

Resolution: an inference technique for CNF:

F1 ∨ · · · ∨ Fn ∨H G1 ∨ · · · ∨Gm ∨ ¬H
F1 ∨ · · · ∨ Fn ∨G1 ∨ · · ·Gm

Lecture 1 Propositional Logic IAM’19 46 / 47

References

[A.R. Bradley and Z. Manna. The Calculus of Computation.]

Lecture 1 Propositional Logic IAM’19 47 / 47

	A Brief History of Logic
	Logic in Computer Science
	Syntax
	Semantics
	Semantic Argument
	Normal Forms

