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Transformation to PNF

m PNF formula is of the form

©=0Q121 . ...Qunxn . V(T1, . Tn, Y1y Ym)

-~

prefix matrix

where Q; € {V,3} and ¢ is QF; {y1, ..., ym} are the free vars of ¢

Transformation to PNF:
remove useless quantifiers
substitute «+» with equivalent formulae: ¢ < < (o —Y) A (Y — ¢)

rename variables (we need to avoid binding previously free
variables when moving quantifiers to the left)

B move negation inside
move quantifiers to the left
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Equivalences for FOL

V.~ & —dz.op

dx. —p & V.
(Vr. o) A (Vg B(y)) & Vo p@) Av(a) o ¢ free(®)
Gz p(x)) vy - ¢y) & Frp@)Vve(e) ifag free(y)
V.oV < (Vr.p)Vy if z ¢ free(v)
dr.pANY & (Fz.p) AP if z ¢ free(v)
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(proof rules)

m negation:
I'E-p
I

m conjunction:
IEony

I'Eg
I'=9

m disjunction:

IEpVy

T
=y

ITEoNY

Iy |

I'te | TEY

(‘' forks computation in
two branches that both
need to be proved)

IT'EpVvy
Iy
Tl
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(proof rules)

m implication:
IEp—y IEp—
Ity | IEW =
Ty
m iff:

ITEpey T @y
IEpny | THEeVY TEReAw | TE-9AY
m contradiction:

IEp ITHyp
I=1
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Semantic Argument for FOL
To decide validity of FOL formulae, we extend the semantic argument
method from PL using the following proof rules:

. T ITEVx. @
m universal quantification 1: forany v € Dy
I<{z—v}Ep
. . L ITHETx.
m existential quantification 1: forany v € Dy

I<{z— v}y
In practice, we often choose v that was already introduced earlier.

. e ITHEVx. @
m universal quantification 2: fora freshv € Dy
I<{z— v}y
. . L ITE3dx. @
m existential quantification 2: for a freshv € Dy

I<{z—v}Ee
The value v cannot have been used in the proof before.

The values v are not interpreted; they are symbolic hames.
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Semantic Argument for FOL

m contradiction:

J:I<a--E=p(siy...,sn)
K:IT<a---FEp(t,... ty)
=1L

forl <i<mn:ay[s;] = axlt]
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Theory of Equality 7z
Theory of Equality 7z (with Uninterpreted Functions):

m Signature: {=, f,g,h,...,p,q,7,...}
> equality (=)/2 and all function and predicate symbols

m Axioms:
Ve.z =1z (reflexivity)
Vr,y.r=y — y==2x (symmetry)
Vr,y,z.x =yAy=2 — xT=2z (transitivity)

for every positive integer n and n-ary function symbol f,
VT, 7. (/n\ T = yl> —  f(@) = f(y) (function congruence)
i=1
for every positive integer n and n-ary predicate symbol p,
VZ, 7. </n\ T; = yi> — (p(@)+p(y)) (predicate congruence)
i=1

T denotes a list of variables z1,...,x,
m Note that only the (=) predicate symbol is interpreted.
m Note that [4] and [5] are axiom schemata.
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Peano Arithmetic 7pa

(first-order arithmetic):
m Signature: {0,S,+,-,=}
> (/0 is a constant (nullary functions)
> S/1is a unary function symbol (called successor)
» (+)/2 and (-)/2 are binary function symbols
> equality (=)/2 is a binary predicate symbol

m Axioms:
Va. =(S(z) = 0) (zero)
Vo,y. S(z) =Sy) — z=y (successor)

for every X1, -formula ¢ with precisely one free variable,

(0(0) A (Vo p(z) = 0(S(2)))) —  Vz. p(z) (induction)

Ve.z+0=x (plus zero)
Vo,y. x+ S(y) = S(z +y) (plus successor)
B vz z-0=0 (times zero)
Vae,y.x-S(y) =z -y+a (times successor)
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