Lab 1 — Propositional Logic

Ondřej Lengál

Faculty of Information Technology Brno University of Technology

IAM'19

Transformation to NNF

■ NNF contains only ∧, ∨, and literals

Transformation to NNF:

1 substitute \leftrightarrow with equivalent formulae:

$$\varphi \leftrightarrow \psi \qquad \Leftrightarrow \qquad (\varphi \to \psi) \land (\psi \to \varphi)$$

2 substitute \rightarrow with equivalent formulae:

$$\varphi \to \psi \qquad \Leftrightarrow \qquad \neg \varphi \lor \psi$$

3 push ¬ to atoms using De Morgan's laws and DNE:

$$\neg(\varphi \wedge \psi) \qquad \Leftrightarrow \qquad \neg\varphi \vee \neg\psi \\
\neg(\varphi \vee \psi) \qquad \Leftrightarrow \qquad \neg\varphi \wedge \neg\psi \\
\neg\neg\varphi \qquad \Leftrightarrow \qquad \varphi$$

Transformation to DNF

■ DNF is NNF of the form $\bigvee_i \bigwedge_j \ell_{i,j}$

Transformation to DNF:

- transform to NNF
- 2 use distributive law:

$$F \wedge (G \vee H) \Leftrightarrow (F \wedge G) \vee (F \wedge H)$$

Transformation to CNF

■ CNF is NNF of the form $\bigwedge_i \bigvee_j \ell_{i,j}$

Transformation to CNF:

- transform to NNF
- 2 use distributive law:

$$F \lor (G \land H) \Leftrightarrow (F \lor G) \land (F \lor H)$$

Equisatisfiability

- transformation to an equivalent CNF formula ~ exponential size
- when testing satisfiability, an equisatisfiable formula would suffice
 - \blacktriangleright φ and ψ are equisatisfiable when φ is satisfiable iff ψ is satisfiable
- Tseytin transformation: linear size
 - 1 transform φ to ψ in NNF using the previous algorithm [linear size]
 - 2 transform ψ to a combinatorial circuit
 - variables of ψ are inputs
 - every subformula corresponds to a logical gate
 - an **auxiliary variable** for every gate (denotes its output)
 - gates: small CNF formulae relating inputs (A, B) with the output (C)
 - the result is the conjuction of formulae for all gates [still linear size]
 - one more clause is added denoting that the output value is true

Equisatisfiability

Type	Operation	CNF expression
NOT	$C \equiv \neg A$	$(A \lor C) \land (\neg A \lor \neg C)$
AND	$C \equiv A \wedge B$	$(A \vee \neg C) \wedge (B \vee \neg C) \wedge (\neg A \vee \neg B \vee C)$
OR	$C \equiv A \vee B$	$(\neg A \lor C) \land (\neg B \lor C) \land (A \lor B \lor \neg C)$

Table: Correct behaviour of gates (A, B) are inputs, C is output, Z denotes when the gate is operating correctly)

NOT					
Α	С	Z			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

AND							
Α	В	С	Z				
0	0	0	1				
0	0	1	0				
0	1	0	1				
0	1	1	0				
1	0	0	1				
1	0	1	0				
1	1	0	0				
1	1	1	1				

OR						
Α	В	С	Z			
0	0	0	1			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	1			
1	1	0	0			
1	1	1	1			