Word Equations in Synergy with Regular Constraints

František Blahoudek ${ }^{1}$, Yu-Fang Chen ${ }^{2}$, David Chocholatý ${ }^{1}$, Vojtěch Havlena ${ }^{1}$, Lukáš Holík ${ }^{1}$, Ondřej Lengál ${ }^{1}$, and Juraj Síč ${ }^{1}$
${ }^{1}$ Faculty of Information Technology, Brno University of Technology, Czech Republic
${ }^{2}$ Institute of Information Science, Academia Sinica, Taiwan

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\text { contains }(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

■ String manipulation in programs

- source of security vulnerabilities
- scripting languages rely heavily on strings

■ new examples of an intensive use of critical string operations

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{*} \wedge x \in a^{*}$
■ results in an infinite case split
■ leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{*} \wedge x \in a^{*}$
■ results in an infinite case split

- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$

- results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints
$■$ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$
■ results in an infinite case split
- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x \in a^{*}$
■ results in an infinite case split

- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y x=x x z \wedge y \in a^{+} b^{+} \wedge z \in b^{+} \wedge x=\epsilon$
■ results in an infinite case split

- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y=z \wedge y \in a^{+} b^{+} \wedge z \in b^{+}$
■ results in an infinite case split

- leads to failure for all current solvers (except ours!)

String solving

■ Satisfiability of formulas over string constraints such as:

$$
\underbrace{x=y z \wedge y \neq u}_{\text {(in)equations }} \wedge \overbrace{x \in(a b)^{*} a^{+}(b \mid c)}^{\text {regular constraints }} \wedge \overbrace{|x|=2|u|+1}^{\text {length constraints }} \wedge \underbrace{\operatorname{contains}(u, \text { replaceAll }(z, b, c))}_{\text {more complex operations }}
$$

- A source of difficulty: equations with regular constraints

■ Example: $z y=z \wedge y \in a^{+} b^{+} \wedge z \in b^{+}$
■ results in an infinite case split
■ leads to failure for all current solvers (except ours!)

- it is UNSAT

Our contribution

■ Decision procedure tightly integrating regular constraints with equations

- Gradually refines languages until:

■ an infeasible constraint is generated or

- refinement becomes stable
- Complete on chain-free fragment
- largest known decidable fragment for equations, regular, transducer, and length constraints
- terminates for all SAT instances

■ Prototype tool Noodler

- in Python

■ competitive with existing solvers

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ $\Sigma=\{a, b\}$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ $\Sigma=\{a, b\}$
■ Use equations to refine regular constraints

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ $\Sigma=\{a, b\}$
■ Use equations to refine regular constraints
■ Start with $x y x=z u$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ $\Sigma=\{a, b\}$
■ Use equations to refine regular constraints

- Start with $x y x=z u$

■ For any solution (assignment v) string $s=\nu(x) \cdot \nu(y) \cdot \nu(x)=\nu(z) \cdot \nu(u)$ satisfies:

$$
s \in \overbrace{\Sigma^{*}}^{x} \overbrace{\Sigma^{*}}^{y} \overbrace{\Sigma^{*}}^{x}=\overbrace{a(b a)^{*}}^{z} \overbrace{(b a b a)^{*} a}^{u}
$$

Example

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ $\Sigma=\{a, b\}$
■ Use equations to refine regular constraints

- Start with $x y x=z u$

■ For any solution (assignment v) string $s=\nu(x) \cdot \nu(y) \cdot \nu(x)=\nu(z) \cdot \nu(u)$ satisfies:

$$
s \in \overbrace{\Sigma^{*}}^{x} \overbrace{\Sigma^{*}}^{y} \overbrace{\Sigma^{*}}^{x}=\overbrace{a(b a)^{*}}^{z} \overbrace{(b a b a)^{*} a}^{u}
$$

■ Refine x, y from the left side $x y x$ using special intersection

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$■$ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides

■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Construct automata for both sides

■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

■ keep ϵ transitions

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \rightarrow \text { (b) }-\rightarrow \text { (q) } \rightarrow \text { (I) } \mathcal{A}_{x y x} \\
& \mathcal{A}_{z u} \\
& \frac{(p, 3)}{a \uparrow} \\
& \text { (2) }(p, 2)-((q, 2) \\
& \rightarrow(1) \rightarrow(p, 1)-((q, 1)
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction

- keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

■ Construct automata for both sides

- $\mathcal{A}_{z u}$ - concatenation of right side
- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

■ keep ϵ transitions

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

■ keep ϵ transitions

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u} \\
& \rightarrow \text { (D) }-\rightarrow \text { (a) } \rightarrow \text { (C) } \mathcal{A}_{x y x}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \overbrace{\substack{a, b \\
\rightarrow(b)}}^{x} \overbrace{a, b \in(a)} \overbrace{\substack{a, b_{Q} \\
\rightarrow(a)}}^{x} \mathcal{A}_{x y x}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \overbrace{\substack{a, b \\
\rightarrow(b)}}^{x} \overbrace{a, b_{Q}}^{y} \overbrace{a, b_{Q}}^{x} \mathcal{A}_{x y x}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u} \rightarrow \text { (P) } \rightarrow \text { (a) }-\rightarrow \text { (C) } \mathcal{A}_{x y x}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{z u}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$
■ synchronous product construction
■ keep ϵ transitions

$$
\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
$$

Intersection with epsilon transitions

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \text { (3) } \underbrace{((p, 3)}_{a \uparrow}-\underbrace{((q, 3)-}_{a \uparrow}-\underbrace{((r, 3))}_{a \uparrow} \\
& a^{1}(2) b \begin{array}{l}
(p, 2)-((q, 2)-((r, 2)) \\
\left.a^{1}\right) b \\
a(2) b \\
a(2) b
\end{array} \\
& \rightarrow(1) \rightarrow \underbrace{((p, 1)}_{x}-\underbrace{((q, 1)}_{y}-\underbrace{((r, 1)}_{x} \\
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

■ Construct automata for both sides
■ $\mathcal{A}_{z u}$ - concatenation of right side

- $\mathcal{A}_{x y x}$ - left side, keep ϵ transitions

■ Construct intersection $\mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}$

- synchronous product construction

■ keep ϵ transitions

- Variables x and y are nicely separated

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \text { (3) } \underbrace{(p, 3)}_{a \uparrow}-\underbrace{((q, 3)-}_{a \uparrow}-\underbrace{(r, 3)}_{a \uparrow} \\
& a{ }^{(2)} b \frac{(p, 2)-}{\left.a^{1}\right) b}-\left(\frac{(q, 2)-}{a(2) b}-((r, 2)) b\right. \\
& \rightarrow(1) \rightarrow \underbrace{((p, 1)}_{x}-\underbrace{((q, 1)}_{y}-\underbrace{((r, 1))}_{x} \\
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles

■ values of y depends on values of x

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \text { (3) } \underbrace{((p, 3)}_{a \uparrow}-\underbrace{((q, 3)-}_{a \uparrow}-\underbrace{((r, 3)}_{a \uparrow} \\
& a(2) b \frac{(p, 2)}{\left.a^{1}\right) b} \frac{(q, 2)}{\left.a^{1}\right) b} \frac{(r, 2)}{\left.a^{1}\right) b} \\
& \rightarrow(1) \rightarrow \underbrace{((p, 1)}_{x} \underbrace{((q, 1)}_{y} \underbrace{((r, 1)}_{x} \\
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
\square values of y depends on values of x

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
\square values of y depends on values of x
■ Noodle languages:
- $L_{1}^{x}=(a b)^{*} a$
- $L^{y}=\epsilon$

■ $L_{2}^{X}=\epsilon$

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
\square values of y depends on values of x
■ Noodle languages:
- $L_{1}^{x}=(a b)^{*} a$
- $L^{y}=\epsilon$

■ $L_{2}^{x}=\epsilon$
\square Unification:

- intersect langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=$

■ Lang $(y)=L^{y}=$

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
- values of y depends on values of x

■ Noodle languages:

- $L_{1}^{x}=(a b)^{*} a$
- $L^{y}=\epsilon$

■ $L_{2}^{x}=\epsilon$
■ Unification:

- intersect langs for the same variable

■ Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=(a b)^{*} a \cap \epsilon=\emptyset$
■ Lang $(y)=L^{y}=\epsilon$

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

$$
\begin{aligned}
& \mathcal{A}_{x y x} \cap_{\epsilon} \mathcal{A}_{z u}
\end{aligned}
$$

- Split product into noodles
\square values of y depends on values of x
■ Noodle languages:
- $L_{1}^{x}=$
- $L^{y}=$
- $L_{2}^{x}=$

■ Unification:

- intersect langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=$
- Lang $(y)=L^{y}=$

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in \Sigma^{*} \wedge y \in \Sigma^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
- values of y depends on values of x

■ Noodle languages:

- $L_{1}^{x}=a(b a)^{*}$
- $L^{y}=(a b)^{*}$
- $L_{2}^{x}=(b a)^{*} a$

■ Unification:

- intersect langs for the same variable
- $\operatorname{Lang}(x)=L_{1}^{x} \cap L_{2}^{x}=$ $a(b a)^{*} \cap(b a)^{*} a=a$
■ Lang $(y)=L^{y}=(a b)^{*}$

Noodlification and unification

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(a b)^{*} \wedge w \in \Sigma^{*}
$$

- Split product into noodles
\square values of y depends on values of x
\square Noodle languages:
- $L_{1}^{x}=a(b a)^{*}$
- $L^{y}=(a b)^{*}$
- $L_{2}^{x}=(b a)^{*} a$

■ Unification:

- intersect langs for the same variable
- Lang $(x)=L_{1}^{x} \cap L_{2}^{x}=$ $a(b a)^{*} \cap(b a)^{*} a=a$
■ Lang $(y)=L^{y}=(a b)^{*}$

Continuing

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(a b)^{*} \wedge w \in \Sigma^{*}
$$

■ Refine further with $w w=x a$:

Continuing

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(a b)^{*} \wedge w \in a
$$

■ Refine further with $w w=x a$:

Continuing

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(a b)^{*} \wedge w \in a
$$

■ Refine further with $w w=x a$:

■ Languages in equations match:

and

Continuing

$$
x y x=z u \wedge w w=x a \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*} \wedge x \in a \wedge y \in(a b)^{*} \wedge w \in a
$$

- Refine further with $w w=x a$:

- Languages in equations match:

and

■ Because of stability (next slide), enough to decide SAT

Stability of equation system

$■$ Single-equation system $\Phi: s=t \wedge \bigwedge_{x \in \mathbb{X}} x \in \operatorname{Lang}_{\phi}(x)$ where Lang ${ }_{\phi}: \mathbb{X} \rightarrow \mathcal{P}\left(\Sigma^{*}\right)$
System Φ has solution iff there is refinement Lang of $\operatorname{Lang}_{\phi}$ where $\operatorname{Lang}(s)=\operatorname{Lang}(t)$.
■ If all variables occuring in t occur in $s=t$ exactly once:

System Φ has solution iff there is refinement Lang of Lang ${ }_{\Phi}$ where $\operatorname{Lang}(s) \subseteq \operatorname{Lang}(t)$.
■ Can be extended to multiple-equation system

Experimental evaluation

	PyEx-Hard $(20,023)$			Kaluza-Hard (897)			Str 2 (293)			Slog (1,896)		
	T/Os	time	time-T/0									
Noodler	39	5,266	2,926	0	46	46	3	198	18	0	165	165
Z3	2,802	178,078	9,958	207	15,360	2,940	149	8,955	15	2	332	212
CVC5	112	12,523	5,803	0	55	55	92	5,525	5	0	14	14
Z3str3RE	814	49,744	904	10	622	22	149	8,972	32	55	4,247	947
Z3str4	461	28,114	454	17	1,039	19	154	9,267	27	208	16,508	4,028
Z3-Trau	108	33,551	27,071	0	201	201	10	724	124	5	970	670
OSTRICH	2,979	214,846	36,106	111	14,912	8,252	238	14,497	217	2	13,601	13,481
Sloth	463	371,373	343,593	0	3,195	3,195		N/A		202	24,940	12,820
Retro	3,004	199,107	18,867	148	16,404	7,524	1	299	239		N/A	

- $\mathrm{T} / \mathrm{Os}=$ timeouts

■ time = total run time in seconds

- time $-\mathrm{T} / \mathrm{O}=$ run time without timeouts

■ best values are in bold

Comparison with CVC5 and Z3str4 on PyEx-Hard

Discussion

- Can beat well established solvers
- can solve more benchmarks
- average time is low

■ Often complementary to other solvers
■ Preprocessing is important

Figure: Hardest 1,023 formulae of PyEx-Hard

Future work

■ Current status:

■ Currently working on:
■ improved decision procedure handling other constraints

- fast C++ implementation within Z3

