New Approaches to Simulation and Analysis of Quantum Circuits

Ondřej Lengál

Brno University of Technology, Czech Republic

FI MUNI (Colloquium)

- first proposed by Feynman (1982)
- promises to efficiently solve some problems we don't know how to efficiently solve classically

- first proposed by Feynman (1982)
- promises to efficiently solve some problems we don't know how to efficiently solve classically
 - ► factoring (Shor, 1994): "exponential" ~> polynomial
 - ▶ unstructured database search (Grover, 1996): $\mathcal{O}(2^n) \rightsquigarrow \mathcal{O}(\sqrt{2^n})$
 - ► Hamiltonian simulation (simulation of physical processes)

- first proposed by Feynman (1982)
- promises to efficiently solve some problems we don't know how to efficiently solve classically
 - ► factoring (Shor, 1994): "exponential" ~> polynomial
 - ▶ unstructured database search (Grover, 1996): $\mathcal{O}(2^n) \sim \mathcal{O}(\sqrt{2^n})$
 - Hamiltonian simulation (simulation of physical processes)
- real-world quantum computers are always 10 years away

- first proposed by Feynman (1982)
- promises to efficiently solve some problems we don't know how to efficiently solve classically
 - ► factoring (Shor, 1994): "exponential" ~> polynomial
 - ▶ unstructured database search (Grover, 1996): $\mathcal{O}(2^n) \sim \mathcal{O}(\sqrt{2^n})$
 - Hamiltonian simulation (simulation of physical processes)
- real-world quantum computers are always 10 years away
- ~ we need to be prepared (computer-aided analysis)

- first proposed by Feynman (1982)
- promises to efficiently solve some problems we don't know how to efficiently solve classically
 - ► factoring (Shor, 1994): "exponential" ~> polynomial
 - ▶ unstructured database search (Grover, 1996): $\mathcal{O}(2^n) \sim \mathcal{O}(\sqrt{2^n})$
 - Hamiltonian simulation (simulation of physical processes)
- real-world quantum computers are always 10 years away
- ~ we need to be prepared (computer-aided analysis)
- FUN and thriving community!

Outline

- Short Quantum Introduction
- 2 Quantum Circuit Analysis
- 3 Quantum States are Trees
- 4 Loop Summarization
- 5 Level-Synchronized Tree Automata
- 6 Verification of Quantum Circuits with Loops
- 7 Takeaways and Future Directions

Short Quantum Introduction

Classical vs. Quantum Circuits — State

X'	<i>y</i> ′	z'	χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Classical vs. Quantum Circuits — State

Quantum	
<i>x</i> (0) — <i>H</i>	x'
<i>y</i> (0) —	y'
z(0) — H — S	

<i>X'</i>	y'	Z'	χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

<i>x</i> ′	<i>y</i> ′	z′	amp
0	0	0	25 %
0	0	1	0%
0	1	0	0%
0	1	1	25 %
1	0	0	25 %
1	0	1	0%
1	1	0	0%
1	1	1	25 %

Classical vs. Quantum Circuits — State

Quantum	
x(0) H	x′
y(0) —	'
z(0) H S z	z′

X'	<i>y</i> ′	Z'	χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

<i>x</i> ′	y'	Z'	amp	
0	0	0	1/2	
0	0	1	0	
0	1	0	0	$amp(\vec{x}) \in \mathbb{Q}$
0	1	1	1/2	
1	0	0	1/2 j	$\Pr(\vec{x}) = x $
1	0	1	0	
1	1	0	0	
1	1	1	½ j	

Classical vs. Quantum Circuits — Gates

A gate is a truth table

а	b	a ⊕ b
0	0	0
0	1	1
1	0	1
1	1	0

Classical vs. Quantum Circuits — Gates

A gate is a truth table

а	b	a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

unitary matrix:

• conjugate transpose $U^{\dagger} = U^{-1}$

Quantum

A gate is a unitary matrix

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix}$$

Classical vs. Quantum Circuits — Gates

A gate is a truth table

а	b	<i>a</i> ⊕ <i>b</i>
0	0	0
0	1	1
1	0	1
1	1	0

Quantum

A gate is a unitary matrix

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix}$$

unitary matrix:

- \blacksquare conjugate transpose $U^{\dagger} = U^{-1}$
- ~ reversibility, norm preservation, no-cloning theorem, . . .

Quantum Circuit Analysis

Hard!

Hard!

- exponential size of state representation
- inherently probabilistic (testing is hard!)
- need to deal with complex numbers

Hard!

- exponential size of state representation
- inherently probabilistic (testing is hard!)
- need to deal with complex numbers

Main approaches:

- state vector simulation (strong: #P-complete)
- equivalence checking (QMA-complete)
 - QMA = Quantum Merlin Author; the so-called "quantum NP"
- 3 (pre/post-condition) verification

Verification of Classical Programs

Verification of classical programs:

(pre/post-condition based, a.k.a. Floyd-Hoare style)

Verification of Classical Programs

Verification of classical programs:

(pre/post-condition based, a.k.a. Floyd-Hoare style)

Pre and Post denote sets of program states

Verification of Classical Programs

Verification of classical programs:

(pre/post-condition based, a.k.a. Floyd-Hoare style)

Pre and Post denote sets of program states

Meaning:

- If S is executed from a state from Pre
- and the execution of S terminates,
- then the program state after *S* terminates is in *Post*.

Verification of quantum circuits:

Verification of quantum circuits:

$$\{Pre\}$$
 C $\{Post\}$

Pre and Post denote sets of quantum states

Verification of quantum circuits:

$$\{Pre\}$$
 C $\{Post\}$

Pre and Post denote sets of quantum states

Meaning:

- If C is executed from a quantum state from Pre
- then the quantum state after C terminates is in Post.
- (termination is implicit)

$$\begin{aligned} \textit{Pre} &= \{ |0000\rangle, |0001\rangle, \dots, |1111\rangle \} \\ \text{e.g., } |0010\rangle &= [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]^T \end{aligned}$$

Example (GHZ)

Pre

$$\begin{aligned} \textit{Pre} &= \{ |0000\rangle, |0001\rangle, \dots, |1111\rangle \} \\ \text{e.g.,} &|0010\rangle &= [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]^T \end{aligned}$$

Circuit

How to efficiently represent sets of quantum states *Pre* and *Post*?

Post

Example (GHZ)

Pre

$$\begin{aligned} \textit{Pre} &= \{ \left| 0000 \right\rangle, \left| 0001 \right\rangle, \dots, \left| 1111 \right\rangle \} \\ \text{e.g., } \left| 0010 \right\rangle &= \left[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \right]^T \end{aligned}$$

Circuit

How to efficiently represent sets of quantum states Pre and Post?

■ naively ~> double exponential size

Post

... and quantum gates are tree operations

X	У	Z	amp
0	0	0	1/2
0	0	1	0
0	1	0	0
0	1	1	1/2
1	0	0	½ j
1	0	1	0
1	1	0	0
1	1	1	½ j

X	У	Z	amp
0	0	0	1/2
0	0	1	0
0	1	0	0
0	1	1	1/2
1	0	0	1/2 j
1	0	1	0
1	1	0	0
1	1	1	½ j

1/2	0	0	1/2	½i	0	0	1/2i
-----	---	---	-----	----	---	---	------

Х	У	Z	amp	0 / 1
0	0	0	1/2	
0	0	1	0	$ \mathcal{O} $
0	1	0	0	\rightarrow \sim \sim
0	1	1	1/2	\rightarrow 0,' \1 0,' \1
1	0	0	1/2 j	(z) (z) (z) (z)
1	0	1	0	\mathcal{A}_{1}
1	1	0	0	$0 \neq 1 0 0 \neq 1 0 0 \neq 1 0 0 \neq 1 0 0 0 \neq 1 0 0 0 0 0 0 0 0 0 $
1	1	1	½ j	1/2 0 0 1/2 1/2i 0 0

■ perfect tree of height n (the number of qubits) $\sim 2^n$ leaves

Quantum Gates are Tree Operations

Quantum Gates are Tree Operations

$$X_1 = \overbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}^X \otimes \overbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}^I$$

Quantum Gates are Tree Operations

$$X_1 = \overbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}^X \otimes \overbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}^I$$

$$CZ_2^1 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix}$$

Quantum Gates are Tree Operations

■ How to efficiently represent sets of trees?

How to efficiently represent sets of trees?

Tree automata!

How to efficiently represent sets of trees?

Tree automata!

- tree automata
 - finite-state automata representing sets of finite trees
 - extension of standard finite automata for regular languages

How to efficiently represent sets of trees?

Tree automata!

- tree automata
 - finite-state automata representing sets of finite trees
 - extension of standard finite automata for regular languages

Example

represents the set

Representing Pre and Post with Tree Automata

$$\{\mathcal{A}_{Pre}\}$$
 $\stackrel{postcondition}{\mathcal{C}}$ $\{\mathcal{A}_{Post}\}$

Representing Pre and Post with Tree Automata

$$\{\mathcal{A}_{ extit{Pre}}\}$$
 $\stackrel{ extit{postcondition}}{\mathcal{C}}$ $\{\mathcal{A}_{ extit{Post}}\}$

Representing Pre and Post with Tree Automata

$$\{\mathcal{A}_{ extit{Pre}}\}$$
 $\left.egin{array}{c} \mathcal{C} & \{\mathcal{A}_{ extit{Post}}\} \end{array}
ight.$

- \blacksquare \mathcal{A} 's size can be small
 - ▶ e.g., \mathcal{A} for $\{|w\rangle : w \in \{0,1\}^n\}$ needs $\mathcal{O}(n)$ states/transitions

Verification with Tree Automata

$$\{\mathcal{A}_{Pre}\}$$
 $\overset{postcondition}{\mathcal{C}}$ $\{\mathcal{A}_{Post}\}$

■ Run C with A_{Pre} :

Verification with Tree Automata

$$\{\mathcal{A}_{ extit{Pre}}\}$$
 $\stackrel{postcondition}{\mathcal{C}}$ $\{\mathcal{A}_{ extit{Post}}\}$

■ Run C with A_{Pre} :

 \blacksquare . . . and test $\mathcal{L}(\mathcal{A}_3) \subseteq \mathcal{L}(\mathcal{A}_{Post})$

(tree automata inclusion is **EXPTIME**-complete)

- How to compute A_2 such that $\mathcal{L}(A_2) = G(\mathcal{L}(A_1))$ efficiently?
 - ▶ naively (i.e., one tree by one) doesn't scale

- How to compute A_2 such that $\mathcal{L}(A_2) = G(\mathcal{L}(A_1))$ efficiently?
 - ▶ naively (i.e., one tree by one) doesn't scale
- abstract transformers
 - specialized automata operations for concrete gates

- How to compute A_2 such that $\mathcal{L}(A_2) = G(\mathcal{L}(A_1))$ efficiently?
 - ▶ naively (i.e., one tree by one) doesn't scale
- ~ abstract transformers
 - specialized automata operations for concrete gates

- Supported gate types:
 - ightharpoonup (anti-)diagonal: X, Y, Z, S, T, R_z , controls (CNOT, CZ, Toffoli, ...)
 - simple manipulation with automaton: $\mathcal{O}(|\mathcal{A}_1|)$

- Supported gate types:
 - ▶ (anti-)diagonal: X, Y, Z, S, T, R_z, controls (CNOT, CZ, Toffoli, ...)
 - simple manipulation with automaton: $\mathcal{O}(|\mathcal{A}_1|)$
 - ightharpoonup general: H, R_x, R_y, \dots
 - need to synchronize subtrees of the same tree

• variable reorder \rightarrow leaf operation \rightarrow variable reorder: $\mathcal{O}(2^{|\mathcal{A}_1|})$

- Algorithm:
 - 1 Start with A_{Pre} .

- Algorithm:
 - 1 Start with A_{Pre} .
 - 2 Run C on A_{Pre} using abstract transformers, obtaining A_C .

- Algorithm:
 - 1 Start with A_{Pre} .
 - 2 Run C on A_{Pre} using abstract transformers, obtaining A_C .
 - $3 \text{ Test } \mathcal{L}(\mathcal{A}_C) \subseteq \mathcal{L}(\mathcal{A}_{Post}).$

- Algorithm:
 - 1 Start with A_{Pre} .
 - 2 Run C on A_{Pre} using abstract transformers, obtaining A_C .
 - 3 Test $\mathcal{L}(\mathcal{A}_C) \subseteq \mathcal{L}(\mathcal{A}_{Post})$.
- Used to verify/find bugs in a number of quantum circuits:
 - Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

- Algorithm:
 - 1 Start with A_{Pre} .
 - 2 Run C on A_{Pre} using abstract transformers, obtaining A_C .
 - 3 Test $\mathcal{L}(\mathcal{A}_C) \subseteq \mathcal{L}(\mathcal{A}_{Post})$.
- Used to verify/find bugs in a number of quantum circuits:
 - Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .
- Scales to up to 40 qubits / 140k gates.
- Found a confirmed bug in QCEC (SOTA equivalence checker).

- Algorithm:
 - 1 Start with A_{Pre} .
 - 2 Run C on A_{Pre} using abstract transformers, obtaining A_C .
 - 3 Test $\mathcal{L}(\mathcal{A}_C) \subseteq \mathcal{L}(\mathcal{A}_{Post})$.
- Used to verify/find bugs in a number of quantum circuits:
 - Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .
- Scales to up to 40 qubits / 140k gates.
- Found a confirmed bug in QCEC (SOTA equivalence checker).
- Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits. PLDI'23.]

Symbolic Amplitudes

■ So far, we only used finite sets of quantum states

- So far, we only used finite sets of quantum states
- But what about verifying a property like this?

Example

$$\begin{aligned} \left\{ h' \left| 000 \right\rangle + \ell' \left| w \right\rangle : \\ w \in \left\{ 0,1 \right\}^3 \setminus \left\{ 000 \right\} \right\} \end{aligned}$$

global constraint:

$$\begin{split} h, h', \ell, \ell' &\in \mathbb{C} \wedge |h'|^2 \ge |h|^2 \wedge |\ell'|^2 \le |\ell|^2 \wedge \\ |h|^2 &\ge |\ell|^2 \wedge |h|^2 + 7|\ell|^2 = 1 \wedge |h'|^2 + 7|\ell'|^2 = 1 \end{split}$$

- So far, we only used finite sets of quantum states
- But what about verifying a property like this?

Example

global constraint:

$$\begin{split} h, h', \ell, \ell' &\in \mathbb{C} \wedge |h'|^2 \geq |h|^2 \wedge |\ell'|^2 \leq |\ell|^2 \wedge \\ |h|^2 &\geq |\ell|^2 \wedge |h|^2 + 7|\ell|^2 = 1 \wedge |h'|^2 + 7|\ell'|^2 = 1 \end{split}$$

uncountably many quantum states

- So far, we only used finite sets of quantum states
- But what about verifying a property like this?

Example

global constraint:

$$\begin{split} &h,h',\ell,\ell' \in \mathbb{C} \wedge |h'|^2 \geq |h|^2 \wedge |\ell'|^2 \leq |\ell|^2 \wedge \\ &|h|^2 \geq |\ell|^2 \wedge |h|^2 + 7|\ell|^2 = 1 \wedge |h'|^2 + 7|\ell'|^2 = 1 \end{split}$$

- uncountably many quantum states
- ~ symbolic amplitudes!

Modifications to the verification algorithm:

- tree automata ~> symbolic tree automata
 - alphabet contains symbolic values, terms, and predicates

Modifications to the verification algorithm:

- tree automata ~> symbolic tree automata
 - alphabet contains symbolic values, terms, and predicates
- abstract transformers are symbolic (à la symbolic execution):

Grover's diffusion operator

Modifications to the verification algorithm:

- tree automata ~> symbolic tree automata
 - alphabet contains symbolic values, terms, and predicates
- abstract transformers are symbolic (à la symbolic execution):

modified language inclusion test

- More expressive specification language
- Properties such as
 - two H gates are identity
 - ▶ Bernstein-Vazirani: no imaginary component
 - Grover_{Single}: Pr(Correct) > 0.9 (n = 20)
 - ▶ Grover_{A//}: Pr(Correct) > 0.9 (n = 9)
 - Grover_{*Iter*}: Pr(Correct) increased (n = 100)

[Chen, Chung, Lengál, Lin, Tsai. AutoQ: An Automata-Based Quantum Circuit Verifier. CAV'23.]

■ Some algorithms use a (fixed #iterations) loop

■ Some algorithms use a (fixed #iterations) loop

- one can use symbolic execution (with refinement) to compute the big-step semantics of the loop body
- ... and then just use that instead of executing the gates

- Significant speed-up of simulation of amplitude amplification
 - e.g., Grover's algorithm (below), quantum counting, period finding

- chance for more speed-up (compute the closed form)
- use for analysis (WIP)

[Chen, Chen, Jiang, Jobranová, Lengál. Accelerating Quantum Circuit Simulation with Symbolic Execution and Loop Summarization. ICCAD'24.]

Level-Synchronized Tree Automata

Level-Synchronized Tree Automata (LSTAs)

Problems with the basic TA-based framework:

- time complexity of some gates is $\mathcal{O}(2^{|\mathcal{A}|})$
- doesn't support parameterized verification
 - e.g., cannot express "all perfect binary trees"

Level-Synchronized Tree Automata

Level-Synchronized Tree Automata

Level-Synchronized Tree Automata

- cost of operations
 - \blacktriangleright (anti-)diagonal gates: still $\mathcal{O}(|\mathcal{A}|)$
 - general gates: $\mathcal{O}(|\mathcal{A}|^2)$ (improved from $\mathcal{O}(2^{|\mathcal{A}|})$)

Level-Synchronized Tree Automata

- cost of operations
 - \blacktriangleright (anti-)diagonal gates: still $\mathcal{O}(|\mathcal{A}|)$
 - general gates: $\mathcal{O}(|\mathcal{A}|^2)$ (improved from $\mathcal{O}(2^{|\mathcal{A}|})$)
- incomparable to basic TAs
 - cannot express "all trees"

Level-Synchronized Tree Automata

- cost of operations
 - \blacktriangleright (anti-)diagonal gates: still $\mathcal{O}(|\mathcal{A}|)$
 - general gates: $\mathcal{O}(|\mathcal{A}|^2)$ (improved from $\mathcal{O}(2^{|\mathcal{A}|})$)
- incomparable to basic TAs
 - cannot express "all trees"
- language operations:
 - emptiness: PSPACE-complete
 - inclusion: PSPACE-hard, in EXPSPACE

Level-Synchronized Tree Automata

enable basic parameterized verification

Level-Synchronized Tree Automata

enable basic parameterized verification

■ GHZ, fermionic unitary evolution (single/double fermionic excitation)

[Abdulla, Chen, Chen, Holík, Lengál, Lin, Lo, Tsai. Verifying Quantum Circuits with Level-Synchronized Tree Automata. POPL'25.]

Verification of Quantum

Circuits with Loops

Verification of Quantum Circuits with Loops

Common structure of quantum programs:

repeat-until-success, weakly measured

8 Post: $\{1 | 10s \rangle + 0 | * \rangle \}$:

Verification of Quantum Circuits with Loops

Common structure of quantum programs:

repeat-until-success, weakly measured

- need to extend LSTAs with
 - measurements
 - symbolic values

Verification of Quantum Circuits with Loops

Common structure of quantum programs:

repeat-until-success, weakly measured

- need to extend LSTAs with
 - measurements
 - symbolic values
- managed to verify:
 - weakly-measured Grover's algorithm
 - several repeat-until-success programs

[Chen, Chung, Hsieh, Huang, Lengál, Lin, Tsai. AutoQ 2.0: From Verification of Quantum Circuits to Verification of Quantum Programs. TACAS'25.]

```
Algorithm 6: A Weakly Measured Version of Grover's algorithm (solution s = 0^n)

1 Pre: {1 |0^{n+2}\rangle + 0 | \rangle};

2 H_3; H_4; ... : H_{n+2};

3 O_{2,...,(n+2)}; C_{2,...,(n+2)};

4 Im: {v_{solt} |000^n\rangle + v_k |000^{n-1}\rangle + \cdots + v_k |000^n\rangle + 0 | \rangle};

6 while M_1 = 0 do

7 |\{g_{2,...,(n+2)}; CK_1^2; O_{2,...,(n+2)}; CK_1^2; O_{2,...,(n+2)}\};

8 Posts (11 |000\rangle + 0 | \rangle);
```

Takeaways and Future

Directions

Takeaways

Quantum Automata

Takeaways

Quantum V Automata

opportunities for new useful formal models

Takeaways

Quantum V Automata

- opportunities for new useful formal models
- a lot of fun!

- parameterized verification of more complex circuits
 - a promising new formal model: alternating weighted LSTAs
 - can express H^{⊗n}
 - language inclusion seems undecidable
 - a suitable transducer model?

- parameterized verification of more complex circuits
 - a promising new formal model: alternating weighted LSTAs
 - can express H^{⊗n}
 - language inclusion seems undecidable
 - a suitable transducer model?
- a good specification language
 - expressive, user-friendly
 - can compile to LSTAs quickly

- parameterized verification of more complex circuits
 - a promising new formal model: alternating weighted LSTAs
 - can express $H^{\otimes n}$
 - language inclusion seems undecidable
 - a suitable transducer model?
- a good specification language
 - expressive, user-friendly
 - can compile to LSTAs quickly
- support for quantum Fourier transform
 - \triangleright $\mathcal{O}(2^n)$ amplitude values

- parameterized verification of more complex circuits
 - a promising new formal model: alternating weighted LSTAs
 - can express $H^{\otimes n}$
 - language inclusion seems undecidable
 - a suitable transducer model?
- a good specification language
 - expressive, user-friendly
 - can compile to LSTAs quickly
- support for quantum Fourier transform
 - \triangleright $\mathcal{O}(2^n)$ amplitude values
 - ▶ ~ needs symbolic values for branches
- equivalence checking of parameterized circuits
 - oracle-based circuits
 - dynamic circuits
 - various notions of equivalence

- parameterized verification of more complex circuits
 - a promising new formal model: alternating weighted LSTAs
 - can express $H^{\otimes n}$
 - language inclusion seems undecidable
 - a suitable transducer model?
- a good specification language
 - expressive, user-friendly
 - can compile to LSTAs quickly
- support for quantum Fourier transform
 - \triangleright $\mathcal{O}(2^n)$ amplitude values
 - ▶ ~ needs symbolic values for branches
- equivalence checking of parameterized circuits
 - oracle-based circuits
 - dvnamic circuits
 - various notions of equivalence
- How to represent quantum circuits efficiently?
 - algebra over trees? logic?

Thank you!