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Why Quantum Computation?

Quantum computation:

m first proposed by Feynman (1982)

m promises to efficiently solve some problems we don’t know how to
efficiently solve classically

> factoring (Shor, 1994): “exponential” ~ polynomial
> unstructured database search (Grover, 1996): O(2") ~» O(v/2")
» Hamiltonian simulation (simulation of physical processes)

m real-world quantum computers are always 10 years away
m ~ we need to be prepared (computer-aided analysis)
m FUN and thriving community!
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Short Quantum Introduction



Classical vs. Quantum Circuits — State
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Classical vs. Quantum Circuits — Gates
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Classical vs. Quantum Circuits — Gates

Classical
x(0) L X'
y(1) y
2(1) J Z

A gate is a truth table

a blasb
0 0 0
0 1 1
10 1
1 1 0

unitary matrix:

m conjugate transpose Ut = U1

Quantum
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Sligh ©

m ~ reversibility, norm preservation, no-cloning theorem, . ..
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Quantum Circuit Analysis



Reasoning over Quantum Circuits
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Reasoning over Quantum Circuits

Hard!

m exponential size of state representation
m inherently probabilistic (testing is hard!)
m need to deal with complex numbers

Main approaches:
state vector simulation (strong: #P-complete)

equivalence checking (QMA-complete)
> QMA = Quantum Merlin Author; the so-called “quantum NP”

(pre/post-condition) verification
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Verification of Classical Programs

Verification of classical programs:
m (pre/post-condition based, a.k.a. Floyd-Hoare style)
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Verification of Classical Programs

Verification of classical programs:
m (pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition postcondition

{Pre} S {Post}

m Pre and Post denote sets of program states
Meaning:

m If Sis executed from a state from Pre

m and the execution of S terminates,

m then the program state after S terminates is in Post.
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Verification of Quantum Circuits

Verification of quantum circuits:

precondition postcondition
circuit
m Pre and Post denote sets of quantum states
Meaning:
m If Cis executed from a quantum state from Pre

m then the quantum state after C terminates is in Post.
m (termination is implicit)
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Verification of Quantum Circuits
Example (GHZ)

—(H——
{Iw) : w € {0,1}4} ® & {3 |0b2bsby) £ 5 |1b2bsby) -
& b2b3b4 € {07 1} }
Pre Circuit Post

Pre = {|0000),[0001),...,[1111)}
e.g.,|0010) = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]”
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Verification of Quantum Circuits

Example (GHZ)
P
{lw) : we {0,114} V1 {J510babsba) + 5 |1bobsby)
& babsbs € {0,1}° }
Pre Circuit Post )

Pre = {|0000),[0001),...,[1111)}
e.g.,|0010) = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]”

How to efficiently represent sets of quantum states Fre and Fosi? J

m naively ~ double exponential size
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Quantum States are Trees

...and quantum gates are iree operations



Quantum States are Trees
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Quantum States are Trees
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Quantum States are Trees

X y z|amp 0 -

00 0| %

00 1] 0 {

01 0] 0

01 1| % 0/

1.0 0/ %i

1 01| 0

110 0 0/\10/

1 1 1| %i [2]oo]%] 1/2||o|o|1/2||

m perfect tree of height n (the number of qubits) ~ 2" leaves
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Quantum Gates are Tree Operations
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Quantum Gates are Tree Operations
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Quantum Gates are Tree Operations
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Quantum Gates are Tree Operations
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Sets of Quantum States are Sets of Trees
m How to efficiently represent sets of trees?
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Sets of Quantum States are Sets of Trees
m How to efficiently represent sets of trees?

Tree automata!

m tree automata

> finite-state automata representing sets of finite trees
» extension of standard finite automata for regular languages

Example
( ,. ,. )
¢ \,' s \,'
N 0 0.0y 0%
represents the set ! o ’ o ’
¢ \,' o \,'
7 \ ’ ’ \ ’ \
(0 0 1 0,0 0 O 1
FIT BUT 15/37



Representing Pre and Post with Tree Automata

precondition postcondition

{APre} C {APost}

circuit
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Representing Pre and Post with Tree Automata

precondition postcondition
{APre} C {APost}
circuit
Example (GHZ)
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Representing Pre and Post with Tree Automata

precondition postcondition
{APre} C {APost}
circuit
Example (GHZ)
N\ N
,'. \ \,'.\ ,'.\' \,'.\ 1".\ '.\1 ".\1 1".\
10 0 0,04 00, —{HF— V0 0050
."’ \. .x, \. 9_ ."’ \. ."’ \.
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E(APre) E(APost)
m A’s size can be small

> e.g., Afor {|jw): w e {0,1}"} needs O(n) states/transitions




Verification with Tree Automata

precondition postcondition

{APre} C {APost}

circuit
m Run C with Apy:

Example
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Verification with Tree Automata

precondition postcondition

{APre} C {APost}

circuit
m Run C with Apy:

Example

B ...and test £(A3z) C L(Apost)
> (tree automata inclusion is EXPTIME-complete)
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Abstract Transformers for Quantum Gates
A4 Ao

m How to compute A, such that £(A) = G(L(.A1)) efficiently?
> naively (i.e., one tree by one) — doesn'’t scale
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Abstract Transformers for Quantum Gates
A4 Ao

m How to compute A, such that £(A) = G(L(.A1)) efficiently?
> naively (i.e., one tree by one) — doesn’t scale

m ~ abstract transformers
> specialized automata operations for concrete gates

Example

1 0
{[00),[01)}




Abstract Transformers for Quantum Gates

A Az

] ]

| l |

el
m Supported gate types:

» (anti-)diagonal: X, Y,Z,S, T, R;, controls (CNOT, CZ, Toffoli, .. .)
¢ simple manipulation with automaton: O(|.A+|)
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Abstract Transformers for Quantum Gates

m Supported gate types:
» (anti-)diagonal: X, Y,Z,S, T, R;, controls (CNOT, CZ, Toffoli, .. .)
¢ simple manipulation with automaton: O(|.A+|)
» general: H,Ry, Ry, ...
® need to synchronize subtrees of the same tree

/. L’
.', \. I \,‘

a b ¢ d - 2 vz vz 2

* variable reorder — leaf operation — variable reorder: O(2!1)
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Quantum Circuit Verification Algorithm

precondition postcondition

{APre} C {APost}

circuit
m Algorithm:
Start with Apye.
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Quantum Circuit Verification Algorithm

precondition postcondition

{APre} C {APost}

circuit
m Algorithm:

Start with Apye.
Run C on Ap, using abstract transformers, obtaining Ac.
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Quantum Circuit Verification Algorithm

precondition postcondition

{APre} C {APost}

circuit
m Algorithm:
Start with Apye.
Run C on Ap, using abstract transformers, obtaining Ac.
Test L(Ac) C L(Apost)-
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Quantum Circuit Verification Algorithm

precondition postcondition

{APre} C {APost}

circuit
m Algorithm:
Start with Apye.
Run C on Ap, using abstract transformers, obtaining Ac.
Test L(Ag) C L(Apost)-

m Used to verify/find bugs in a number of quantum circuits:
» Bernstein-Vazirani, Grover (Single/All), MCToffoli, . ..
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precondition postcondition

{APre} C {APost}

circuit
m Algorithm:
Start with Apre.
Run C on Ap, using abstract transformers, obtaining Ac.
Test L(Ag) C L(Apost)-

m Used to verify/find bugs in a number of quantum circuits:
» Bernstein-Vazirani, Grover (Single/All), MCToffoli, . ..

m Scales to up to 40 qubits / 140k gates.
m Found a confirmed bug in QCEC (SOTA equivalence checker).
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Quantum Circuit Verification Algorithm

precondition postcondition

{APre} C {APost}

circuit
m Algorithm:
Start with Apye.
Run C on Ap, using abstract transformers, obtaining Ac.
Test L(Ag) C L(Apost)-

m Used to verify/find bugs in a number of quantum circuits:
» Bernstein-Vazirani, Grover (Single/All), MCToffoli, . ..

m Scales to up to 40 qubits / 140k gates.
m Found a confirmed bug in QCEC (SOTA equivalence checker).
m Established a connection between quantum and automata.

[Chen, Chung, Lengal, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI'23.]
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Introducing Symbolic Amplitudes

m So far, we only used finite sets of quantum states
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Introducing Symbolic Amplitudes

m So far, we only used finite sets of quantum states
m But what about verifying a property like this?

Example
{h1000) + £ |w) : — Grover |— {h'|000) + ¢ |w) :
we {0,113\ {000}}  — - w e {0,1}%\ {000}}

global constraint:
hH, 0.0 e CAIHZ > AP AR < 0P A
|hZ > € A AP+ 7102 =1 AW+ 7107 =1
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Introducing Symbolic Amplitudes

m So far, we only used finite sets of quantum states
m But what about verifying a property like this?

Example
{h1000) + £ |w) : — Grover |— {h'|000) + ¢ |w) :
we {0,113\ {000}}  — - w e {0,1}%\ {000}}

global constraint:
hH, 0.0 e CAIHZ > AP AR < 0P A
|hZ > € A AP+ 7102 =1 AW+ 7107 =1

m uncountably many quantum states
m ~ symbolic amplitudes!
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Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
m tree automata ~ symbolic tree automata
> alphabet contains symbolic values, terms, and predicates
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Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
m tree automata ~ symbolic tree automata
> alphabet contains symbolic values, terms, and predicates

m abstract transformers are symbolic (a /a symbolic execution):

Example
o )
ZAN N
[ ] [ ] 7 7
VWA hide bt ht Nt
h ¢ ¢ 7 5 2 2 2

Grover’s diffusion operator
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Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
m tree automata ~ symbolic tree automata
> alphabet contains symbolic values, terms, and predicates

m abstract transformers are symbolic (a /a symbolic execution):

Example
o )
ZAN N
[ ] [ ] 7 7
VWA hide bt ht Nt
h ¢ ¢ 7 5 2 2 2

Grover’s diffusion operator

m modified language inclusion test
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Verifying Quantum Circuits using Symbolic Amplitudes

m More expressive specification language

m Properties such as
> two H gates are identity
> Bernstein-Vazirani: no imaginary component
> Groversgjyge: Pr(Correct) > 0.9 (n = 20)
» Groveryy: Pr(Correct) > 0.9 (n=9)
» Grovery,,: Pr(Correct) increased (n = 100)

[Chen, Chung, Lengal, Lin, Tsai. AutoQ: An Automata-Based Quan-
tum Circuit Verifier. CAV'23.]
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Loop Summarization

m Some algorithms use a (fixed #iterations) loop

Example (Grover’s algorithm)

one iteration

one iteration

Oracle | | Diff Oracle| | Diff
oA+ H
7 V2" iterations



Loop Summarization

m Some algorithms use a (fixed #iterations) loop

Example (Grover’s algorithm)

one iteration one iteration

O —HH

Oracle Diff Oracle

Diff

7 V2" iterations

B one can use symbolic execution (with refinement) to compute the

big-step semantics of the loop body

m ... and then just use that instead of executing the gates

Ondrej Lengal Simulation and Analysis of Quantum Circuits
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Loop Summarization
m Significant speed-up of simulation of amplitude amplification
> e.g., Grover’s algorithm (below), quantum counting, period finding

3500 ~#— MEDUSA-loop
~o— MEDUSA-base

~@— SliQSim
3000 —e— DDSIM
~e— Quasimodo CFLOBDD
~e— Quasimodo WBDD
2500 ~e— Quasimodo BDD
£ 2000
o
1500
1000
500
0

ISEEE-ERE 4 EE R A N
Numberolqublts

Runtim

m chance for more speed-up (compute the closed form)
m use for analysis (WIP)

[Chen, Chen, Jiang, Jobranova, Lengal. Accelerating Quantum Circuit Sim-
ulation with Symbolic Execution and Loop Summarization. ICCAD’24.]
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Level-Synchronized Tree Automata (LSTAS)

Problems with the basic TA-based framework:
m time complexity of some gates is O(214)

m doesn’t support parameterized verification
> e.g., cannot express “all perfect binary trees”
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata }
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata )

m allow synchronization across subtrees
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata J

m allow synchronization across subtrees

m cost of operations
> (anti-)diagonal gates: still O(|.A|)
> general gates: O(|A[?) (improved from O(2141))
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata J

m allow synchronization across subtrees

m cost of operations
> (anti-)diagonal gates: still O(|.A|)
> general gates: O(|.A|?) (improved from O(2/41))

m incomparable to basic TAs
» cannot express “all trees”
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata J

m allow synchronization across subtrees

m cost of operations
> (anti-)diagonal gates: still O(|.A])
> general gates: O(|.A|?) (improved from O(2/41))

m incomparable to basic TAs
» cannot express “all trees”
m language operations:

» emptiness: PSPACE-complete
» inclusion: PSPACE-hard, in EXPSPACE

Ondrej Lengal Simulation and Analysis of Quantum Circuits FIT BUT 30/37



Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata J

m enable basic parameterized verification

Example (GHZ)

{510" + 51" :n>1}

v
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Level-Synchronized Tree Automata (LSTAS)

Level-Synchronized Tree Automata J

m enable basic parameterized verification

Example (GHZ)

{510" + 51" :n>1}

v

m GHZ, fermionic unitary evolution (single/double fermionic excitation)

[Abdulla, Chen, Chen, Holik, Lengal, Lin, Lo, Tsai. Verifying Quantum Cir-
cuits with Level-Synchronized Tree Automata. POPL25.]
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Verification of Quantum
Circuits with Loops




Verification of Quantum Circuits with Loops

Algorithm 6: A Weakly Measured Version of

m Common structure of quantum programs:  Grovers aigoritm solution s = 0°)

1 Pre: {1[0™2) +0+)}1;
2 Hi; Hg; oo lem;
= 3 Os,. (n42); CKT: 02, (n42)s
while (M(X,) = 0) 4 Im'(:x,‘,‘,)\()()()’l’)+\A‘(()l)(|?”‘]>+ ot
. s Vi [0017) + vgorz [1007) +0 %)}
C, 6 while M; =0do
7 ‘ {Ga...142): Os,...(n42): CK3: 0, a2y
8 Post: {1[10s) +0[+)};

repeat-until-success, weakly measured
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Algorithm 6: A Weakly Measured Version of
m Common structure of quantum programs:  Grovers aigoritm solution s = 0°)
1 Pre: {1[0™2) +0+)}1;
2 Hy: Hy: ...3 Hyeol
3 02 (n42): CK3 0, (na2):

while (M(X,) = 0) J 4 0v: (Vo 10007) + v [000711) 4 -+

C_ Vi [0017) + vz [100™) + 0 %) };
b

6 while M; =0do
repeat-until-success, weakly measured

7 ‘ {Ga...142): Os,...(n42): CK3: 0, a2y
8 Post: {1]10s) +0[#)}:

m need to extend LSTAs with

> measurements
» symbolic values
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Verification of Quantum Circuits with Loops

Algorithm 6: A Weakly Measured Version of

m Common structure of quantum programs:  Grovers aigoritm solution s = 0°)

1 Pre: {1[0™2) +0+)}1;
2 Hi; Hg; oo lem;
= 3 Os,. (n42); CKT: 02, (n42)s
while (M(X,) = 0) 4 Im'{:\,‘g,)\()()()’l’>+\ﬁ \(nm')'*‘]w ot
5 Vi 0017 + vz [1007) +0 [)};
C, & while M, = 0do
7| G021 On (142 CKBOs(ni2y )1

8 Post: {1[10s) + 0 [#)};

repeat-until-success, weakly measured

m need to extend LSTAs with
> measurements
» symbolic values

m managed to verify:

> weakly-measured Grover’s algorithm
> several repeat-until-success programs

[Chen, Chung, Hsieh, Huang, Lengal, Lin, Tsai. AutoQ 2.0: From Verifica-
tion of Quantum Circuits to Verification of Quantum Programs. TACAS'25.]
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Takeaways

Quantum ¢ Automata

m opportunities for new useful formal models
m a lot of fun!
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Future Directions

m parameterized verification of more complex circuits
> a promising new formal model: alternating weighted LSTAs

e can express H®"
® language inclusion seems undecidable

> a suitable transducer model?
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Future Directions

m parameterized verification of more complex circuits
> a promising new formal model: alternating weighted LSTAs

® can express H®"
® |anguage inclusion seems undecidable

> a suitable transducer model?
B a good specification language

> expressive, user-friendly
» can compile to LSTAs quickly

m support for quantum Fourier transform

> O(2™) amplitude values
> ~ needs symbolic values for branches

m equivalence checking of parameterized circuits
> oracle-based circuits
» dynamic circuits
> various notions of equivalence

m How to represent quantum circuits efficiently?
> algebra over trees? logic?
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Thank you!
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