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Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically

▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away
; we need to be prepared (computer-aided analysis)
FUN and thriving community!
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Short Quantum Introduction



Classical vs. Quantum Circuits — State
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

x ′ y ′ z ′ χ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x ′

y(0) y ′

z(0) H S z ′
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z(0) H S z ′

x ′ y ′ z ′ amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

amp(x⃗) ∈ C

Pr(x⃗) = |x |2
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Classical vs. Quantum Circuits — Gates
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

A gate is a truth table

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Quantum

x(0) H x ′

y(0) y ′

z(0) H S z ′

A gate is a unitary matrix

U =


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 −1√

2
1√
2

0 −1√
2

0


unitary matrix:

conjugate transpose U† = U−1

; reversibility, norm preservation, no-cloning theorem, . . .
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Quantum Circuit Analysis



Reasoning over Quantum Circuits

Hard!
exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification
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Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 8 / 37



Reasoning over Quantum Circuits

Hard!
exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification
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Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .
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Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)
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Verification of Quantum Circuits
Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}
e.g., |0010⟩ = [0, 0,1, 0, 0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0]T

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size
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Quantum States are Trees

. . . and quantum gates are tree operations



Quantum States are Trees
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Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

perfect tree of height n (the number of qubits) ; 2n leaves
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x y z amp
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0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

z z z z

y y

x
0 1

0 1 0 1

0 1 0 1 0 1 0 1

perfect tree of height n (the number of qubits) ; 2n leaves
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Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Hadamard gate
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Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


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Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}

Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions
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Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit
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{APost}
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Verification with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Run C with APre:

Example

H

APre A2 A3

. . . and test L(A3) ⊆ L(APost)
▶ (tree automata inclusion is EXPTIME-complete)
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Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}
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Abstract Transformers for Quantum Gates

G

A1 A2

Supported gate types:
▶ (anti-)diagonal: X ,Y ,Z ,S,T ,Rz , controls (CNOT ,CZ ,Toffoli , . . . )

• simple manipulation with automaton: O(|A1|)

▶ general: H,Rx ,Ry , . . .
• need to synchronize subtrees of the same tree

•

•

a b

•

c d

H
•

•

a+c√
2

b+d√
2

•

a−c√
2

b−d√
2

• variable reorder → leaf operation → variable reorder: O(2|A1|)
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Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.

2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .

3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]
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Symbolic Amplitudes



Introducing Symbolic Amplitudes
So far, we only used finite sets of quantum states

But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many quantum states
; symbolic amplitudes!
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Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
tree automata ; symbolic tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test
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Verifying Quantum Circuits using Symbolic Amplitudes

More expressive specification language

Properties such as
▶ two H gates are identity
▶ Bernstein-Vazirani: no imaginary component
▶ GroverSingle: Pr(Correct) > 0.9 (n = 20)
▶ GroverAll : Pr(Correct) > 0.9 (n = 9)
▶ GroverIter : Pr(Correct) increased (n = 100)

[Chen, Chung, Lengál, Lin, Tsai. AutoQ: An Automata-Based Quan-
tum Circuit Verifier. CAV’23.]
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Loop Summarization



Loop Summarization
Some algorithms use a (fixed #iterations) loop

Example (Grover’s algorithm)

...

|0⟩ H

Oracle Diff Oracle Diff

|0⟩ H

one iteration one iteration

· · ·

π
4

√
2n iterations

one can use symbolic execution (with refinement) to compute the
big-step semantics of the loop body
. . . and then just use that instead of executing the gates
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Loop Summarization
Significant speed-up of simulation of amplitude amplification
▶ e.g., Grover’s algorithm (below), quantum counting, period finding

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of qubits

0

500

1000

1500

2000

2500

3000

3500
Ru

nt
im

e 
[s

]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

chance for more speed-up (compute the closed form)
use for analysis (WIP)

[Chen, Chen, Jiang, Jobranová, Lengál. Accelerating Quantum Circuit Sim-
ulation with Symbolic Execution and Loop Summarization. ICCAD’24.]
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Level-Synchronized
Tree Automata



Level-Synchronized Tree Automata (LSTAs)

Problems with the basic TA-based framework:

time complexity of some gates is O(2|A|)

doesn’t support parameterized verification
▶ e.g., cannot express “all perfect binary trees”
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Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE
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Level-Synchronized Tree Automata (LSTAs)
Level-Synchronized Tree Automata

enable basic parameterized verification

Example (GHZ)
p

q1

q0

1

0

{1}

{1}

{1}

{2}

{2}

...

|x1⟩ H

|x2⟩
|x3⟩

|xn−2⟩
|xn−1⟩

|xn⟩

p

qRqL

q0

1√
2

1√
2

0

{1} {1}

{1}

{2}

{2}

{2}

{|0n⟩ : n ≥ 1} { 1√
2
|0n⟩+ 1√

2
|1n⟩ : n ≥ 1}

GHZ, fermionic unitary evolution (single/double fermionic excitation)

[Abdulla, Chen, Chen, Holı́k, Lengál, Lin, Lo, Tsai. Verifying Quantum Cir-
cuits with Level-Synchronized Tree Automata. POPL’25.]
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Verification of Quantum
Circuits with Loops



Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

repeat-until-success, weakly measured

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
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Takeaways and Future
Directions



Takeaways

Quantum ♡ Automata

opportunities for new useful formal models
a lot of fun!
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Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?
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Thank you!
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