
New Approaches to Simulation and Analysis of
Quantum Circuits

Ondřej Lengál

Brno University of Technology, Czech Republic

FI MUNI (Colloquium)



Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically

▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away
; we need to be prepared (computer-aided analysis)
FUN and thriving community!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 2 / 37



Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically
▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away
; we need to be prepared (computer-aided analysis)
FUN and thriving community!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 2 / 37



Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically
▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away

; we need to be prepared (computer-aided analysis)
FUN and thriving community!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 2 / 37



Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically
▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away
; we need to be prepared (computer-aided analysis)

FUN and thriving community!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 2 / 37



Why Quantum Computation?

Quantum computation:
first proposed by Feynman (1982)
promises to efficiently solve some problems we don’t know how to
efficiently solve classically
▶ factoring (Shor, 1994): “exponential” ; polynomial
▶ unstructured database search (Grover, 1996): O(2n) ; O(

√
2n)

▶ Hamiltonian simulation (simulation of physical processes)

real-world quantum computers are always 10 years away
; we need to be prepared (computer-aided analysis)
FUN and thriving community!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 2 / 37



Outline

1 Short Quantum Introduction

2 Quantum Circuit Analysis

3 Quantum States are Trees

4 Loop Summarization

5 Level-Synchronized Tree Automata

6 Verification of Quantum Circuits with Loops

7 Takeaways and Future Directions

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 3 / 37



Short Quantum Introduction



Classical vs. Quantum Circuits — State
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

x ′ y ′ z ′ χ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x ′

y(0) y ′

z(0) H S z ′

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37



Classical vs. Quantum Circuits — State
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

x ′ y ′ z ′ χ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x ′

y(0) y ′

z(0) H S z ′

x ′ y ′ z ′ amp

0 0 0 25 %
0 0 1 0 %
0 1 0 0 %
0 1 1 25 %
1 0 0 25 %
1 0 1 0 %
1 1 0 0 %
1 1 1 25 %

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37



Classical vs. Quantum Circuits — State
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

x ′ y ′ z ′ χ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x ′

y(0) y ′

z(0) H S z ′

x ′ y ′ z ′ amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

amp(x⃗) ∈ C

Pr(x⃗) = |x |2

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37



Classical vs. Quantum Circuits — Gates
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

A gate is a truth table

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Quantum

x(0) H x ′

y(0) y ′

z(0) H S z ′

A gate is a unitary matrix

U =


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 −1√

2
1√
2

0 −1√
2

0


unitary matrix:

conjugate transpose U† = U−1

; reversibility, norm preservation, no-cloning theorem, . . .

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 6 / 37



Classical vs. Quantum Circuits — Gates
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

A gate is a truth table

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Quantum

x(0) H x ′

y(0) y ′

z(0) H S z ′

A gate is a unitary matrix

U =


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 −1√

2
1√
2

0 −1√
2

0


unitary matrix:

conjugate transpose U† = U−1

; reversibility, norm preservation, no-cloning theorem, . . .

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 6 / 37



Classical vs. Quantum Circuits — Gates
Classical

x(0) x ′

y(1)
y ′

z(1) z ′

A gate is a truth table

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Quantum

x(0) H x ′

y(0) y ′

z(0) H S z ′

A gate is a unitary matrix

U =


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 −1√

2
1√
2

0 −1√
2

0


unitary matrix:

conjugate transpose U† = U−1

; reversibility, norm preservation, no-cloning theorem, . . .
Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 6 / 37



Quantum Circuit Analysis



Reasoning over Quantum Circuits

Hard!
exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 8 / 37



Reasoning over Quantum Circuits

Hard!

exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 8 / 37



Reasoning over Quantum Circuits

Hard!
exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 8 / 37



Reasoning over Quantum Circuits

Hard!
exponential size of state representation
inherently probabilistic (testing is hard!)
need to deal with complex numbers

Main approaches:

1 state vector simulation (strong: #P-complete)

2 equivalence checking (QMA-complete)
▶ QMA = Quantum Merlin Author; the so-called “quantum NP”

3 (pre/post-condition) verification

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 8 / 37



Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 9 / 37



Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 9 / 37



Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 9 / 37



Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 10 / 37



Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 10 / 37



Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 10 / 37



Verification of Quantum Circuits
Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}
e.g., |0010⟩ = [0, 0,1, 0, 0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0]T

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 11 / 37



Verification of Quantum Circuits
Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}
e.g., |0010⟩ = [0, 0,1, 0, 0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0]T

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 11 / 37



Verification of Quantum Circuits
Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}
e.g., |0010⟩ = [0, 0,1, 0, 0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0]T

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 11 / 37



Quantum States are Trees

. . . and quantum gates are tree operations



Quantum States are Trees
. . . and quantum gates are tree operations



Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 13 / 37



Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 13 / 37



Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

z z z z

y y

x
0 1

0 1 0 1

0 1 0 1 0 1 0 1

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 13 / 37



Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Hadamard gate

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 14 / 37



Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Hadamard gate

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 14 / 37



Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Hadamard gate

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 14 / 37



Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Hadamard gate

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 14 / 37



Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37



Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!

tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37



Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37



Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37



Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}

Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 16 / 37



Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 16 / 37



Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions
Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 16 / 37



Verification with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Run C with APre:

Example

H

APre A2 A3

. . . and test L(A3) ⊆ L(APost)
▶ (tree automata inclusion is EXPTIME-complete)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 17 / 37



Verification with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Run C with APre:

Example

H

APre A2 A3

. . . and test L(A3) ⊆ L(APost)
▶ (tree automata inclusion is EXPTIME-complete)
Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 17 / 37



Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 18 / 37



Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 18 / 37



Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 18 / 37



Abstract Transformers for Quantum Gates

G

A1 A2

Supported gate types:
▶ (anti-)diagonal: X ,Y ,Z ,S,T ,Rz , controls (CNOT ,CZ ,Toffoli , . . . )

• simple manipulation with automaton: O(|A1|)

▶ general: H,Rx ,Ry , . . .
• need to synchronize subtrees of the same tree

•

•

a b

•

c d

H
•

•

a+c√
2

b+d√
2

•

a−c√
2

b−d√
2

• variable reorder → leaf operation → variable reorder: O(2|A1|)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 19 / 37



Abstract Transformers for Quantum Gates

G

A1 A2

Supported gate types:
▶ (anti-)diagonal: X ,Y ,Z ,S,T ,Rz , controls (CNOT ,CZ ,Toffoli , . . . )

• simple manipulation with automaton: O(|A1|)
▶ general: H,Rx ,Ry , . . .

• need to synchronize subtrees of the same tree
•

•

a b

•

c d

H
•

•

a+c√
2

b+d√
2

•

a−c√
2

b−d√
2

• variable reorder → leaf operation → variable reorder: O(2|A1|)

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 19 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.

2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .

3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).

Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Used to verify/find bugs in a number of quantum circuits:
▶ Bernstein-Vazirani, Grover (Single/All), MCToffoli, . . .

Scales to up to 40 qubits / 140k gates.
Found a confirmed bug in QCEC (SOTA equivalence checker).
Established a connection between quantum and automata.

[Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Frame-
work for Verification and Bug Hunting in Quantum Circuits. PLDI’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 20 / 37



Symbolic Amplitudes



Introducing Symbolic Amplitudes
So far, we only used finite sets of quantum states

But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many quantum states
; symbolic amplitudes!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 22 / 37



Introducing Symbolic Amplitudes
So far, we only used finite sets of quantum states
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many quantum states
; symbolic amplitudes!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 22 / 37



Introducing Symbolic Amplitudes
So far, we only used finite sets of quantum states
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many quantum states

; symbolic amplitudes!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 22 / 37



Introducing Symbolic Amplitudes
So far, we only used finite sets of quantum states
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many quantum states
; symbolic amplitudes!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 22 / 37



Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
tree automata ; symbolic tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 23 / 37



Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
tree automata ; symbolic tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 23 / 37



Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
tree automata ; symbolic tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 23 / 37



Verifying Quantum Circuits using Symbolic Amplitudes

More expressive specification language

Properties such as
▶ two H gates are identity
▶ Bernstein-Vazirani: no imaginary component
▶ GroverSingle: Pr(Correct) > 0.9 (n = 20)
▶ GroverAll : Pr(Correct) > 0.9 (n = 9)
▶ GroverIter : Pr(Correct) increased (n = 100)

[Chen, Chung, Lengál, Lin, Tsai. AutoQ: An Automata-Based Quan-
tum Circuit Verifier. CAV’23.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 24 / 37



Loop Summarization



Loop Summarization
Some algorithms use a (fixed #iterations) loop

Example (Grover’s algorithm)

...

|0⟩ H

Oracle Diff Oracle Diff

|0⟩ H

one iteration one iteration

· · ·

π
4

√
2n iterations

one can use symbolic execution (with refinement) to compute the
big-step semantics of the loop body
. . . and then just use that instead of executing the gates

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 26 / 37



Loop Summarization
Some algorithms use a (fixed #iterations) loop

Example (Grover’s algorithm)

...

|0⟩ H

Oracle Diff Oracle Diff

|0⟩ H

one iteration one iteration

· · ·

π
4

√
2n iterations

one can use symbolic execution (with refinement) to compute the
big-step semantics of the loop body
. . . and then just use that instead of executing the gates

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 26 / 37



Loop Summarization
Significant speed-up of simulation of amplitude amplification
▶ e.g., Grover’s algorithm (below), quantum counting, period finding

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of qubits

0

500

1000

1500

2000

2500

3000

3500
Ru

nt
im

e 
[s

]

MEDUSA-loop
MEDUSA-base
SliQSim
DDSIM
Quasimodo CFLOBDD
Quasimodo WBDD
Quasimodo BDD

chance for more speed-up (compute the closed form)
use for analysis (WIP)

[Chen, Chen, Jiang, Jobranová, Lengál. Accelerating Quantum Circuit Sim-
ulation with Symbolic Execution and Loop Summarization. ICCAD’24.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 27 / 37



Level-Synchronized
Tree Automata



Level-Synchronized Tree Automata (LSTAs)

Problems with the basic TA-based framework:

time complexity of some gates is O(2|A|)

doesn’t support parameterized verification
▶ e.g., cannot express “all perfect binary trees”

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 29 / 37



Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 30 / 37



Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 30 / 37



Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 30 / 37



Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 30 / 37



Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion: PSPACE-hard, in EXPSPACE

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 30 / 37



Level-Synchronized Tree Automata (LSTAs)
Level-Synchronized Tree Automata

enable basic parameterized verification

Example (GHZ)
p

q1

q0

1

0

{1}

{1}

{1}

{2}

{2}

...

|x1⟩ H

|x2⟩
|x3⟩

|xn−2⟩
|xn−1⟩

|xn⟩

p

qRqL

q0

1√
2

1√
2

0

{1} {1}

{1}

{2}

{2}

{2}

{|0n⟩ : n ≥ 1} { 1√
2
|0n⟩+ 1√

2
|1n⟩ : n ≥ 1}

GHZ, fermionic unitary evolution (single/double fermionic excitation)

[Abdulla, Chen, Chen, Holı́k, Lengál, Lin, Lo, Tsai. Verifying Quantum Cir-
cuits with Level-Synchronized Tree Automata. POPL’25.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 31 / 37



Level-Synchronized Tree Automata (LSTAs)
Level-Synchronized Tree Automata

enable basic parameterized verification

Example (GHZ)
p

q1

q0

1

0

{1}

{1}

{1}

{2}

{2}

...

|x1⟩ H

|x2⟩
|x3⟩

|xn−2⟩
|xn−1⟩

|xn⟩

p

qRqL

q0

1√
2

1√
2

0

{1} {1}

{1}

{2}

{2}

{2}

{|0n⟩ : n ≥ 1} { 1√
2
|0n⟩+ 1√

2
|1n⟩ : n ≥ 1}

GHZ, fermionic unitary evolution (single/double fermionic excitation)

[Abdulla, Chen, Chen, Holı́k, Lengál, Lin, Lo, Tsai. Verifying Quantum Cir-
cuits with Level-Synchronized Tree Automata. POPL’25.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 31 / 37



Verification of Quantum
Circuits with Loops



Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

repeat-until-success, weakly measured

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝐿+2) , works from
qubits 𝑆2 to 𝑆𝐿+2, where 𝑆2 is the ancilla qubit and 𝑆3 to 𝑆𝐿+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the e"ect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝐿↔ and |1𝐿↔, for all solutions 𝐿. The
oracle circuit can be constructed using gates supported in A!"#Q 2.0.

15

need to extend LSTAs with
▶ measurements
▶ symbolic values

managed to verify:
▶ weakly-measured Grover’s algorithm
▶ several repeat-until-success programs

[Chen, Chung, Hsieh, Huang, Lengál, Lin, Tsai. AutoQ 2.0: From Verifica-
tion of Quantum Circuits to Verification of Quantum Programs. TACAS’25.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 33 / 37



Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

repeat-until-success, weakly measured

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝐿+2) , works from
qubits 𝑆2 to 𝑆𝐿+2, where 𝑆2 is the ancilla qubit and 𝑆3 to 𝑆𝐿+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the e"ect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝐿↔ and |1𝐿↔, for all solutions 𝐿. The
oracle circuit can be constructed using gates supported in A!"#Q 2.0.

15

need to extend LSTAs with
▶ measurements
▶ symbolic values

managed to verify:
▶ weakly-measured Grover’s algorithm
▶ several repeat-until-success programs

[Chen, Chung, Hsieh, Huang, Lengál, Lin, Tsai. AutoQ 2.0: From Verifica-
tion of Quantum Circuits to Verification of Quantum Programs. TACAS’25.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 33 / 37



Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

repeat-until-success, weakly measured

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝐿+2) , works from
qubits 𝑆2 to 𝑆𝐿+2, where 𝑆2 is the ancilla qubit and 𝑆3 to 𝑆𝐿+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the e"ect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝐿↔ and |1𝐿↔, for all solutions 𝐿. The
oracle circuit can be constructed using gates supported in A!"#Q 2.0.

15

need to extend LSTAs with
▶ measurements
▶ symbolic values

managed to verify:
▶ weakly-measured Grover’s algorithm
▶ several repeat-until-success programs

[Chen, Chung, Hsieh, Huang, Lengál, Lin, Tsai. AutoQ 2.0: From Verifica-
tion of Quantum Circuits to Verification of Quantum Programs. TACAS’25.]

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 33 / 37



Takeaways and Future
Directions



Takeaways

Quantum ♡ Automata

opportunities for new useful formal models
a lot of fun!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 35 / 37



Takeaways

Quantum ♡ Automata
opportunities for new useful formal models

a lot of fun!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 35 / 37



Takeaways

Quantum ♡ Automata
opportunities for new useful formal models
a lot of fun!

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 35 / 37



Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 36 / 37



Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 36 / 37



Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 36 / 37



Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 36 / 37



Future Directions
parameterized verification of more complex circuits
▶ a promising new formal model: alternating weighted LSTAs

• can express H⊗n

• language inclusion seems undecidable
▶ a suitable transducer model?

a good specification language
▶ expressive, user-friendly
▶ can compile to LSTAs quickly

support for quantum Fourier transform
▶ O(2n) amplitude values
▶ ; needs symbolic values for branches

equivalence checking of parameterized circuits
▶ oracle-based circuits
▶ dynamic circuits
▶ various notions of equivalence

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 36 / 37



Thank you!


	Short Quantum Introduction
	Quantum Circuit Analysis
	Quantum States are Trees
	Loop Summarization
	Level-Synchronized Tree Automata
	Verification of Quantum Circuits with Loops
	Takeaways and Future Directions

