Efficient Techniques for Manipulation of
Non-deterministic Tree Automata

Lukas Holik'2 Ondrej Lengal’ Jifi Simagek'® Tomas Vojnar’

"Brno University of Technology, Czech Republic
2Uppsala University, Sweden
SVERIMAG, UJF/CNRS/INPG, Giéres, France

October 19, 2012

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 1/29

Outline

Tree Automata
TA Downward Universality Checking
VATA: A Tree Automata Library

Conclusion

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 2/29

Trees

Very popular in computer science:
m data structures, ./’ \
m computer network topologies,)lk)lk
m distributed protocols, ...

In formal verification:
m e.g. encoding of complex data structures
e doubly linked lists, ...

dll

dil p
a
next next next
o [“a” [b [“c’ 1
prev prev

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 3/29

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (g, ...

e [...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata

7qh)’

October 19, 2012

4/29

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (q1,. .., qn),
e [...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

(18
shean @ @ @

<5 (q,9),
H

) @ (@ (@ @

Example:
A = |

Q =

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

4/29

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q.. .finite set of states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Example:
A = |
s-L(r.q.r),
r-2(q.9),
qg-%
}

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 4/29

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q.. .finite set of states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Example:
A = |
s-Ls(r.q,n),
r -2+ (g.q),
q-5
}

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 4/29

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (q1,. .., qn),

e [...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Example:
A = |
(r,q.r),

s
<5 (q,9),
H

QO =

}

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

4/29

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, .

-y

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

o often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

e even for operations such as language inclusion (ARTMC, .. .),
m handling large alphabets (MSO, WSKS).

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

5/29

Efficient Techniques for Manipulation of Tree Automata

m We focus on the problem of checking language inclusion.

m For simplicity, we demonstrate the ideas on:
e finite automata,
e and checking universality (£(.A) L).
m Their extension to tree automata is quite straightforward.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 6/29

Finite Automata Universality Checking

m PSPACE-complete
m The Textbook algorithm for checking
L£(A) <5

Determinise A — AP.

Complement AP — AP
> by complementing the set of final states.

Check £(AD) £ 0,

> search for a reachable final state.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129

Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking

L£(A) <5

Determinise A — AP.

Complement AP — AP
> by complementing the set of final states. !

Check £(AD) £ 0,

> search for a reachable final state.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129

Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking

L£(A) <5

Determinise A — AP.
» exponential explosion!

Complement AP — AP
> by complementing the set of final states. !

Check £(AD) £ 0,

> search for a reachable final state.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129

Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking [LE[VEIelgRe TN Iglo)

L(A) LT L(A) 2 L(B)

Determinise A — AP,
» exponential explosion!

Complement AP — AD
> by complementing the set of final states.

Inclusion checking

Check £(AD) £ 0, _ .
» search for a reachable final state. LAPYNL(B) =0

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129

Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

workset = {

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 8/29

Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Init

=~
workset = {{1}

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 8/29

Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Init (1=

A~ A~

workset = { {1} s {27 3}7 {g}
~——

1=

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 8/29

Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Ini R

~ = =~ =
workset = {{1},{2,3},{2},{3.4},{4}
SN—— SN——

{112 {2,3}-%

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 8/29

Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

/n,t -2 {2 312 ab
=~
workset = {{1} {2,3},{2},{3,4}, {4} {3}}

{1 }*) {2,3}% {2}—)

a

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 8/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

R has a bigger chance to encounter a non-final macrostate

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

workset = { }

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init

=
workset = {{1} }

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],
m keep only macrostates sufficient to encounter a non-final set:

e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init {1->

A Py
workset = { {1}) {ga 3}’ {g} }
SN——

{15

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init (132
P =
workset = {{1} A2} }

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init 1 {22
= = =
workset = { {1}) {g}v 3}5 {&} }
—~—
{215

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 9/29

Finite Automata Universality Checking
Optimisations:
m The Antichains + Simulation algorithm [Abdulla, et al. TACAS’10],

Simulation
A preorder < such that

b

Y Yl

<Van.qi>s — Hr.piw/\sjr)

Note that g < p = £(q) C L(p)!

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 10/29

Finite Automata Universality Checking
Optimisations:
m The Antichains + Simulation algorithm [Abdulla, et al. TACAS’10],

Simulation
A preorder < such that

b

Y Yl

<Van.qi>s — Hr.piw/\sjr)

Note that g < p = £(q) C L(p)!

m refine workset using simulation VreR3seS . r<s
—
o if macrostates R and S are both in workset, R <"2 S
» remove S from workset (because L£(R) C L(S)),
o further, minimise macrostates w.r.t. <: {p,q,x} = {p, x}

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 10/29

Tree Automata Universality Checking

m EXPTIME-complete

m Checking whether £(A) < Ts.

m The (upward) Textbook, On-the-fly, and Antichains algorithms:

e straightforward extension of the algorithms for FA,
e perform upward (i.e. bottom-up) determinisation of the TA,
e need to find tuples of macrostates to perform an upward transition.

m The (upward) Antichains + Simulation algorithm:
¢ needs to use upward simulation (implies inclusion of “open trees”)
» usually not very rich.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 11/29

TA Downward Universality Checking

m TA Downward Universality Checking: [Holik, et al. ATVA'11]

m inspired by XML Schema containment checking:
e [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],

m does not follow the classic schema of universality algorithms:

e can’t determinise: top-down DTA are strictly less powerful than TA,
e however, there exists a complementation procedure.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 12/29

TA Downward Universality Checking

(r.,r) r-%

LN
g—f>(s,s) s -2 (> (>
q-% O O 6 © Tab
b, a a |b b

Y = {f,ao, bo}
L(q) = Tx if and only if
(L(r) x L(r))U(L(s) x L(8))=Ts x Ts

(universality of tuples!)

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 13/29

TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 14/29

TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 14/29

TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

(L(v1) x L(wv2)) U (L(w1) x L(wz)) =

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 14/29

TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

(L(v1) x L(v2)) U (L(wr) x L(wg)) =
(L(v)xTs) N (TexL(v2) U ((L(wi)xTg) N (TexL(we)))

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 14/29

TA Downward Universality Checking

Note that in general
(L(v1)xL(v2))U(L(wr)x L(W2)) # (L(v1)UL(W1))x (L(v2)UL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

(L(v1) x L(v2)) U (L(w1) x L(we)) =
(L(vi)xTx) N (TexL(w2))) U ((L(w)xTs) 1 (TexL(wz)))
Using distributive laws, this becomes

((,C(V1)XT2) U (£(W1)><T):)) N ((ﬁ(V1)XTz) U (TzXﬁ(Wg)))m
(TexL(v2)) U (L(wq)xTs)) 0 (TexL(v2)) U (TzxL(wz)))

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 14/29

TA Downward Universality Checking

((ﬁ(V1)>< Tz) U (E(W1)X Tz)) N
((L(vi)xTs) U (TexL(wz))) N
((TzXﬁ(Vg)) U (ﬁ(W1)>< Tz)) N
((TzX,C(Vg)) U (TzXC(Wg))) =Ts x Ty

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 15/29

TA Downward Universality Checking

((L(v)xTs) U (L(wy)xTx)) N
((L(vi)xTs) U (TexL(wz))) N
((TexL(v2)) U (L(wq)xTx)) N
(TsxL(v)) U (TexL(wg)) =Tz x Ts
is equal to

(ﬁ(V1)><Tz) U ((W1)>< z)) Ts x Ty A
(,C(V1)><T):) U (T):X,C(WQ)) Tz X Tz A
(TsxL(v2)) U (L(w)xTs)) =T x Ts A
(TzXﬁ(Vg)) U (T):X,C(WQ)) = Tz X Tz

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

15/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U ((W1)>< Tz)) = }: x Ty A
(,C(V1)><T):)) (TZXE(WQ))) =Tsx Ty A
(TexL(ve)) U (L(wi)xTx)) = T: >: xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

16/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U ((W1)>< z)): }: x Ty A
(,C(V1)><T):)) (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (£(wi)xTx)) = T): xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T

Each clause can be checked separately ...

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

16/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U ((W1)>< z)): }: x Ty A
(ﬁ(V1)><T):)) (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (£(wi)xTx)) = T): xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T

Each clause can be checked separately ...

..which is again checking inclusion of union of tuples, but now ...

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

16/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

...which is again checking inclusion of union of tuples, but now ...

...each tuple has a non- Ty language on a single position.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

16/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 16/29

TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =

(L({vi,m}) = Tx) A
(Lwuh)=Ts) Vv (L{{wm})=Ts)) A
— (L{m})=Ts) Vv (LHw})=Ts)) A
(L({ve,w2}) = Tx)
——

macrostate

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 16/29

Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:

e forall clauses ...
e exists a position such that universality holds.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012

17/29

Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:
e forall clauses ...
e exists a position such that universality holds.

m Cut the DFS when

e there is no transition for a symbol, or
e macrostate is already in workset.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 17/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Cut the DFS on macrostate S’ when
e a smaller macrostate S, S C &', is already in workset,
» if Sis universal, S’ will also be universal.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 18/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
If a macrostate P is found to be non-universal, cache it;
e do not expand any new macrostate P’ C P,
> surely L(P') # Ts.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 19/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 20/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.
However, we cannot simply cache macrostate R through which we
return in the DFS!

= Why?

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 20/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.

However, we cannot simply cache macrostate R through which we

return in the DFS!

m Why?
m Universality of R might be

falsified on other branches of
the DFSI!

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 20/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Solution: cache the set Z for which the universality condition
holds, BUT together with the precondition why it holds:

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 21/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Solution: cache the set Z for which the universality condition
holds, BUT together with the precondition why it holds:

m i.e. we maintain a pair of sets of -
macrostates (Ant, Con) meaning that
Ant = Con, i.e.

A\ uA) = A\ Uo),
A€Ant CeCon
m when the DFS is returning via

G, it removes G from Ant and
adds Gto Con,

m when Ant becomes empty, all
sets S from Con are cached.)

m If found X, G C X, return. @

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 21/29

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains + Simulation
m Downward simulation

e implies inclusion of (downward) tree languages of states,
e usually quite rich.

Downward simulation <p

m In Antichains, instead of C use <.
m further, minimise macrostates w.r.t. <p: {p,q,x} = {p, x}

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 22/29

Experiments

m Comparison of different inclusion checking algorithms
e down — downward, up — upward,

e +s — using upward/downward simulation,

e —o — with optimisation 3 (Ant, Con).

[“ down [down+s [down-o [down-o+s [up [up+s]
Winner 36.35% 415% | 32.20% 3.15% | 24.14% | 0.00%
Timeouts 3251% | 18.27% | 32.51% 18.27 % 0.00% | 0.00%

Holik, Lengal, Simacek, Vojnar (Brno)

Efficient Manipulation of Tree Automata

October 19, 2012

23/29

VATA: A Tree Automata Library

VATA is a new tree automata library that
m supports non-deterministic tree automata,
m provides encodings suitable for different contexts:
e explicit, and
e semi-symbolic,
m is written in G++,
m is open source and free under GNU GPLv3,

® http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
e or (shorter), http://goo.gl/KNpMH

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 24/29

Supported Operations

Supported operations:

union,

intersection,

removing unreachable or useless states and transitions,
testing language emptiness,

computing downward and upward simulation,
simulation-based reduction,
testing language inclusion,

import from file/export to file.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 25/29

Simulations

Explicit:
m downward simulation <p,
m upward simulation <.

Work by transforming automaton to labelled transition systems,
m computing simulation on the LTS, [Holik, Simacek. MEMICS'09],
m which is an improvement of [Ranzato, Tapparo. LICS'07].

Semi-symbolic:

m downward simulation computation based on
[Henzinger, Henzinger, Kopke. FOCS’95].

Reduction according to downward simulation.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 26/29

Conclusion

m A new tree automata library available

e containing various optimisations of the used algorithms,
e particularly highly efficient inclusion checking algorithms.

m Support for working with non-deterministic automata.

m Easy to extend with own encoding/operations.

m The library is open source and free under GNU GPLv3.
m Available at

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 27/29

Future work

m Add new representations of finite word/tree automata,
o that address particular issues, such as

» large number of states, or
» fast checking of language inclusion.

m Add missing operations,

e development is demand-driven,
e if you miss something, write to us, the feature may appear soon.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 28/29

Thank you for your attention.

Questions?

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 29/29

	Tree Automata
	Finite Automata Universality Checking
	Tree Automata Universality Checking

	TA Downward Universality Checking
	Optimisations of Downward TA Universality Algorithm

	VATA: A Tree Automata Library
	Conclusion

