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Trees

Very popular in computer science:
m data structures, ./’ \
m computer network topologies, )lk )lk
m distributed protocols, ...

In formal verification:
m e.g. encoding of complex data structures
e doubly linked lists, ...
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Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (g, ...

e [ ...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up
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Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (q1,. .., qn),
e [ ...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up
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Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q.. .finite set of states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [ ...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Example:
A = |
s-L(r.q.r),
r-2(q.9),
qg-%
}
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Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

o A ...set of transitions in the form of p -2 (q1,. .., qn),

e [ ...setof initial/final (root) states.

m two concepts: top-down vs. bottom-up

Example:
A = |
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Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, .

-y

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

o often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

e even for operations such as language inclusion (ARTMC, .. .),
m handling large alphabets (MSO, WSKS).
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Efficient Techniques for Manipulation of Tree Automata

m We focus on the problem of checking language inclusion.

m For simplicity, we demonstrate the ideas on:
e finite automata,
e and checking universality (£(.A) L ).
m Their extension to tree automata is quite straightforward.
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Finite Automata Universality Checking

m PSPACE-complete
m The Textbook algorithm for checking
L£(A) <5

Determinise A — AP.

Complement AP — AP
> by complementing the set of final states.

Check £(AD) £ 0,

> search for a reachable final state.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129



Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking

L£(A) <5

Determinise A — AP.

Complement AP — AP
> by complementing the set of final states. !

Check £(AD) £ 0,

> search for a reachable final state.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 7129



Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking

L£(A) <5

Determinise A — AP.
» exponential explosion!

Complement AP — AP
> by complementing the set of final states. !

Check £(AD) £ 0,

> search for a reachable final state.
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Finite Automata Universality Checking

m PSPACE-complete

m The Textbook algorithm for checking  [LE[VEIelgRe TN Iglo)

L(A) LT L(A) 2 L(B)

Determinise A — AP,
» exponential explosion!

Complement AP — AD
> by complementing the set of final states.

Inclusion checking

Check £(AD) £ 0, _ .
» search for a reachable final state. LAPYNL(B) =0
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Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

workset = {
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Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Init

=~
workset = {{1}
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Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L%

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Init (1=

A~ A~

workset = { {1} s {27 3}7 {g}
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Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

Ini R

~ = =~ =
workset = {{1},{2,3},{2},{3.4},{4}
SN—— SN——

{112 {2,3}-%
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Finite Automata Universality Checking

The On-the-fly algorithm for checking universality

L(A) L

Traverse A from the initial states.
Perform on-the-fly determinisation, keep a workset of macrostates.
If encountered a macrostate P, such that PN F = (),
e return false.
Otherwise, return true.

/n,t -2 {2 312 ab
=~
workset = {{1} {2,3},{2},{3,4}, {4} {3}}

{1 }*) {2,3}% {2}—)

a
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Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

R has a bigger chance to encounter a non-final macrostate
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m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],
m keep only macrostates sufficient to encounter a non-final set:

e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init {1->

A Py
workset = { {1} ) {ga 3}’ {g} }
SN——

{15
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Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init (132
P =
workset = {{1} A2} }
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Finite Automata Universality Checking

Optimisations:
m The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV’06],

m keep only macrostates sufficient to encounter a non-final set:
e if macrostates Rand S, R C S, are both in workset,
» remove S from workset.

Init 1 {22
= = =
workset = { {1} ) {g}v 3}5 {&} }
—~—
{215
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Finite Automata Universality Checking
Optimisations:
m The Antichains + Simulation algorithm [Abdulla, et al. TACAS’10],

Simulation
A preorder < such that

b

Y Yl

<Van.qi>s — Hr.piw/\sjr)

Note that g < p = £(q) C L(p)!
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Finite Automata Universality Checking
Optimisations:
m The Antichains + Simulation algorithm [Abdulla, et al. TACAS’10],

Simulation
A preorder < such that

b

Y Yl

<Van.qi>s — Hr.piw/\sjr)

Note that g < p = £(q) C L(p)!

m refine workset using simulation VreR3seS . r<s
—
o if macrostates R and S are both in workset, R <"2 S
» remove S from workset (because L£(R) C L(S)),
o further, minimise macrostates w.r.t. <: {p,q,x} = {p, x}
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Tree Automata Universality Checking

m EXPTIME-complete

m Checking whether £(A) < Ts.

m The (upward) Textbook, On-the-fly, and Antichains algorithms:

e straightforward extension of the algorithms for FA,
e perform upward (i.e. bottom-up) determinisation of the TA,
e need to find tuples of macrostates to perform an upward transition.

m The (upward) Antichains + Simulation algorithm:
¢ needs to use upward simulation (implies inclusion of “open trees”)
» usually not very rich.
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TA Downward Universality Checking

m TA Downward Universality Checking: [Holik, et al. ATVA'11]

m inspired by XML Schema containment checking:
e [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],

m does not follow the classic schema of universality algorithms:

e can’t determinise: top-down DTA are strictly less powerful than TA,
e however, there exists a complementation procedure.
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TA Downward Universality Checking

(r.,r) r-%

LN
g—f>(s,s) s -2 (> (>
q-% O O 6 © Tab
b, a a |b b

Y = {f,ao, bo}
L(q) = Tx if and only if
(L(r) x L(r))U(L(s) x L(8))=Ts x Ts

(universality of tuples!)

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 13/29



TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))
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However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over )
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TA Downward Universality Checking

Note that in general
(L(va)x L(v2))U(L(wr)x L{w2)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over )

(L(v1) x L(v2)) U (L(wr) x L(wg)) =
(L(v)xTs) N (TexL(v2) U ((L(wi)xTg) N (TexL(we)))
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TA Downward Universality Checking

Note that in general
(L(v1)xL(v2))U(L(wr)x L(W2)) # (L(v1)UL(W1))x (L(v2)UL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over )

(L(v1) x L(v2)) U (L(w1) x L(we)) =
(L(vi)xTx) N (TexL(w2))) U ((L(w)xTs) 1 (TexL(wz)))
Using distributive laws, this becomes

((,C(V1)XT2) U (£(W1)><T):)) N ((ﬁ(V1)XTz) U (TzXﬁ(Wg)))m
(TexL(v2)) U (L(wq)xTs)) 0 (TexL(v2)) U (TzxL(wz)))
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TA Downward Universality Checking

((ﬁ(V1)>< Tz) U (E(W1)X Tz)) N
((L(vi)xTs) U (TexL(wz))) N
((TzXﬁ(Vg)) U (ﬁ(W1)>< Tz)) N
((TzX,C(Vg)) U (TzXC(Wg))) =Ts x Ty
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TA Downward Universality Checking

((L(v)xTs) U (L(wy)xTx)) N
((L(vi)xTs) U (TexL(wz))) N
((TexL(v2)) U (L(wq)xTx)) N
(TsxL(v)) U (TexL(wg)) =Tz x Ts
is equal to

(ﬁ(V1)><Tz) U ( (W1)>< z)) Ts x Ty A
(,C(V1)><T):) U (T):X,C(WQ )) Tz X Tz A
(TsxL(v2)) U (L(w)xTs)) =T x Ts A
(TzXﬁ(Vg)) U (T):X,C(WQ )) = Tz X Tz
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U ( (W1)>< Tz)) = }: x Ty A
(,C(V1)><T):) ) (TZXE(WQ))) =Tsx Ty A
(TexL(ve)) U (L(wi)xTx)) = T: >: xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U ( (W1)>< z)): }: x Ty A
(,C(V1)><T):) ) (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (£(wi)xTx)) = T): xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T

Each clause can be checked separately ...
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U ( (W1)>< z)): }: x Ty A
(ﬁ(V1)><T):) ) (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (£(wi)xTx)) = T): xTs A
(TsxL(v2)) U (TexL(wo))) =Ts x T

Each clause can be checked separately ...

..which is again checking inclusion of union of tuples, but now ...
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

...which is again checking inclusion of union of tuples, but now ...

...each tuple has a non- Ty language on a single position.
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =
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TA Downward Universality Checking

(ﬁ(V1)><Tz) U (ﬁ(W1)><Tz)) =TexTs A
(ﬁ(V1)><T):) U (TZXE(WQ))) =Tsx Ty A
(TexL(v2)) U (L(w)xTs)) =T x Tx A
(TexL(vz)) U (TexL(wz))) =Tz x T

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =

(L({vi,m}) = Tx) A
(Lwuh)=Ts) Vv (L{{wm})=Ts)) A
— (L{m})=Ts) Vv (LHw})=Ts)) A
(L({ve,w2}) = Tx)
——

macrostate

Holik, Lengal, Simacek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 16/29



Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:

e forall clauses ...
e exists a position such that universality holds.
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Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:
e forall clauses ...
e exists a position such that universality holds.

m Cut the DFS when

e there is no transition for a symbol, or
e macrostate is already in workset.
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Cut the DFS on macrostate S’ when
e a smaller macrostate S, S C &', is already in workset,
» if Sis universal, S’ will also be universal.

Holik, Lengal, Simagek, Vojnar (Brno) Efficient Manipulation of Tree Automata October 19, 2012 18/29



Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
If a macrostate P is found to be non-universal, cache it;
e do not expand any new macrostate P’ C P,
> surely L(P') # Ts.
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.
However, we cannot simply cache macrostate R through which we
return in the DFS!

= Why?
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
We wish to perform a similar optimisation as in 2.

However, we cannot simply cache macrostate R through which we

return in the DFS!

m Why?
m Universality of R might be

falsified on other branches of
the DFSI!
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Solution: cache the set Z for which the universality condition
holds, BUT together with the precondition why it holds:
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
Solution: cache the set Z for which the universality condition
holds, BUT together with the precondition why it holds:

m i.e. we maintain a pair of sets of -
macrostates (Ant, Con) meaning that
Ant = Con, i.e.

A\ uA) = A\ Uo),
A€Ant CeCon
m when the DFS is returning via

G, it removes G from Ant and
adds Gto Con,

m when Ant becomes empty, all
sets S from Con are cached. )

m If found X, G C X, return. @
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Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains + Simulation
m Downward simulation

e implies inclusion of (downward) tree languages of states,
e usually quite rich.

Downward simulation <p

m In Antichains, instead of C use <.
m further, minimise macrostates w.r.t. <p: {p,q,x} = {p, x}
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Experiments

m Comparison of different inclusion checking algorithms
e down — downward, up — upward,

e +s — using upward/downward simulation,

e —o — with optimisation 3 (Ant, Con).

[ “ down [ down+s [ down-o [ down-o+s [ up [ up+s ]
Winner 36.35% 415% | 32.20% 3.15% | 24.14% | 0.00%
Timeouts 3251% | 18.27% | 32.51% 18.27 % 0.00% | 0.00%
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VATA: A Tree Automata Library

VATA is a new tree automata library that
m supports non-deterministic tree automata,
m provides encodings suitable for different contexts:
e explicit, and
e semi-symbolic,
m is written in G++,
m is open source and free under GNU GPLv3,

® http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
e or (shorter), http://goo.gl/KNpMH
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Supported Operations

Supported operations:

union,

intersection,

removing unreachable or useless states and transitions,
testing language emptiness,

computing downward and upward simulation,
simulation-based reduction,
testing language inclusion,

import from file/export to file.
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Simulations

Explicit:
m downward simulation <p,
m upward simulation <.

Work by transforming automaton to labelled transition systems,
m computing simulation on the LTS, [Holik, Simacek. MEMICS'09],
m which is an improvement of [Ranzato, Tapparo. LICS'07].

Semi-symbolic:

m downward simulation computation based on
[Henzinger, Henzinger, Kopke. FOCS’95].

Reduction according to downward simulation.
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Conclusion

m A new tree automata library available

e containing various optimisations of the used algorithms,
e particularly highly efficient inclusion checking algorithms.

m Support for working with non-deterministic automata.

m Easy to extend with own encoding/operations.

m The library is open source and free under GNU GPLv3.
m Available at

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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Future work

m Add new representations of finite word/tree automata,
o that address particular issues, such as

» large number of states, or
» fast checking of language inclusion.

m Add missing operations,

e development is demand-driven,
e if you miss something, write to us, the feature may appear soon.
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Thank you for your attention.

Questions?
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