Efficient Techniques for Manipulation of Non-deterministic Tree Automata

Lukáš Holík^{1,2} Ondřej Lengál¹ Jiří Šimáček^{1,3} Tomáš Vojnar¹

¹Brno University of Technology, Czech Republic ²Uppsala University, Sweden ³VERIMAG, UJF/CNRS/INPG, Gières, France

October 19, 2012

Outline

- Tree Automata
- TA Downward Universality Checking
- 3 VATA: A Tree Automata Library
- 4 Conclusion

Trees

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- e.g. encoding of complex data structures
 - doubly linked lists, . . .

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.
- two concepts: top-down vs. bottom-up

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.
- two concepts: top-down vs. bottom-up

Example: $\Delta = \{$ $\frac{\underline{s} \xrightarrow{f} (r, q, r),}{r \xrightarrow{g} (q, q),}$ $q \xrightarrow{a}$ $\}$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.
- two concepts: top-down vs. bottom-up

Example: $\Delta = \{ \underbrace{\frac{s}{\varphi}(r,q,r)}_{q,q,q}, \qquad \underbrace{\frac{g}{\varphi}(q,q)}_{q,q}, \qquad$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.
- two concepts: top-down vs. bottom-up

Example: $\Delta = \{ \\ \underline{s} \xrightarrow{f} (r, q, r), \\ r \xrightarrow{g} (q, q), \\ q \xrightarrow{a} \}$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q...finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.
- two concepts: top-down vs. bottom-up

Example: $\Delta = \{$ $\frac{\underline{s} \xrightarrow{f} (r, q, r),}{r \xrightarrow{g} (q, q),}$ $q \xrightarrow{a}$ $\}$

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - manipulate them without determinisation,
 - even for operations such as language inclusion (ARTMC, ...),
- handling large alphabets (MSO, WSkS).

Efficient Techniques for Manipulation of Tree Automata

- We focus on the problem of checking language inclusion.
- For simplicity, we demonstrate the ideas on:
 - finite automata.
 - and checking universality $(\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*)$.
- Their extension to tree automata is quite straightforward.

PSPACE-complete

■ The **Textbook** algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \to A^D$.
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.

search for a reachable final state.

PSPACE-complete

■ The **Textbook** algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \rightarrow A^D$.
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.

search for a reachable final state.

PSPACE-complete

■ The **Textbook** algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \to A^D$.
 - exponential explosion!
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.

search for a reachable final state.

PSPACE-complete

■ The **Textbook** algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

Inclusion checking

$$\mathcal{L}(\mathcal{A})\stackrel{?}{\supseteq}\mathcal{L}(\mathcal{B})$$

- 1 Determinise $A \to A^D$.
 - exponential explosion!
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.
- 3 Check $\mathcal{L}(\overline{\mathcal{A}^D}) \stackrel{?}{=} \emptyset$,
 - search for a reachable final state.

Inclusion checking

$$\mathcal{L}(\overline{\mathcal{A}^D}) \cap \mathcal{L}(\mathcal{B}) \stackrel{?}{=} \emptyset$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$workset = \{$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit}$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$\textit{workset} = \{\underbrace{\{\underline{1}\}}^{\textit{lnit}}, \underbrace{\{\underline{2},3\}}_{\{1\}}, \underbrace{\{\underline{2}\}}^{b}$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

Optimisations:

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, R ⊆ S, are both in workset,
 - remove S from workset.

R has a bigger chance to encounter a non-final macrostate

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{\underbrace{\{\underline{1}\}}^{\textit{Init}}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{ \underbrace{\{\underline{1}\}}_{\{\underline{1}\}}, \underbrace{\{\underline{2},3\}}_{\{1\}}, \underbrace{\{\underline{2}\}}_{a} \}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit} , \underbrace{\{\underline{2}\}}^{b} \}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit} , \underbrace{\{\underline{2}\}, \underbrace{\{\underline{3}\}}_{\{\underline{4}\}}}^{\{\underline{1}\}} \}$$

Optimisations:

■ The Antichains + Simulation algorithm [Abdulla, et al. TACAS'10],

Simulation

A preorder \leq such that

$$q \leq p \implies$$

$$\left(\forall a \in \Sigma . q \stackrel{a}{\longrightarrow} s \implies \exists r.p \stackrel{a}{\longrightarrow} r \land s \leq r\right)$$

$$q \longrightarrow s$$

Note that $q \leq p \implies \mathcal{L}(q) \subseteq \mathcal{L}(p)!$

Optimisations:

■ The Antichains + Simulation algorithm [Abdulla, et al. TACAS'10],

Simulation

A preorder \leq such that

$$q \leq p \implies$$

$$\left(\forall a \in \Sigma . q \xrightarrow{a} s \implies \exists r.p \xrightarrow{a} r \land s \leq r\right)$$

Note that $q \leq p \implies \mathcal{L}(q) \subseteq \mathcal{L}(p)!$

■ refine *workset* using simulation

- $\forall r \in R \exists s \in S . r \leq s$
- if macrostates R and S are both in workset, $R \preceq^{\forall \exists} S$
 - ▶ remove *S* from *workset* (because $\mathcal{L}(R) \subseteq \mathcal{L}(S)$),
- further, minimise macrostates w.r.t. \prec : $\{p, q, x\} \Rightarrow \{p, x\}$

Tree Automata Universality Checking

- EXPTIME-complete
- Checking whether $\mathcal{L}(\mathcal{A}) \stackrel{?}{=} T_{\Sigma}$.
- The (upward) Textbook, On-the-fly, and Antichains algorithms:
 - straightforward extension of the algorithms for FA.
 - perform upward (i.e. bottom-up) determinisation of the TA,
 - need to find tuples of macrostates to perform an upward transition.
- The (upward) Antichains + Simulation algorithm:
 - needs to use upward simulation (implies inclusion of "open trees")
 - usually not very rich.

- TA Downward Universality Checking: [Holík, et al. ATVA'11]
- inspired by XML Schema containment checking:
 - [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],

- does not follow the classic schema of universality algorithms:
 - can't determinise: top-down DTA are strictly less powerful than TA,
 - however, there exists a complementation procedure.

$$\begin{array}{ccc} & \mathcal{A} & \\ & \underline{q} \stackrel{f}{\longrightarrow} (r,r) & r \stackrel{a}{\longrightarrow} \\ & \underline{q} \stackrel{f}{\longrightarrow} (s,s) & s \stackrel{b}{\longrightarrow} \\ & \underline{q} \stackrel{b}{\longrightarrow} & \\ & \underline{q} \stackrel{b}{\longrightarrow} & \end{array}$$

$$\Sigma = \{f_2, a_0, b_0\}$$

$$\mathcal{L}(q) = T_{\Sigma}$$
 if and only if

$$(\mathcal{L}(r) \times \mathcal{L}(r)) \cup (\mathcal{L}(s) \times \mathcal{L}(s)) = T_{\Sigma} \times T_{\Sigma}$$

(universality of tuples!)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = \mathcal{T}_{\Sigma} \dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2))$$

$$(\mathcal{L}(w_1) \times \mathcal{L}(w_2)) =$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

Using distributive laws, this becomes

```
\begin{array}{ccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap \\ ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) & \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) & = T_{\Sigma} \times T_{\Sigma} \end{array}
```

$$\begin{array}{ccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap \\ ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) & \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) & = T_{\Sigma} \times T_{\Sigma} \end{array}$$

...is equal to ...

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

- \ldots which is again checking inclusion of union of tuples, but now \ldots
- ... each tuple has a non- T_{Σ} language on a single position.

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

- ... which is again checking inclusion of union of tuples, but now ...
- ... each tuple has a non- T_{Σ} language on a single position.
- ⇒ Checking language inclusion can be done component-wise. ⇒

$$\begin{array}{cccc} (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) = T_{\Sigma} \times T_{\Sigma} & \wedge \\ (T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) = T_{\Sigma} \times T_{\Sigma} \end{array}$$

- \dots which is again checking inclusion of union of tuples, but now \dots
- \dots each tuple has a non- T_{Σ} language on a single position.
- \Rightarrow Checking language inclusion can be done component-wise. \Rightarrow

$$(\mathcal{L}(\{v_1, w_1\}) = T_{\Sigma}) \qquad \land \\ ((\mathcal{L}(\{v_1\}) = T_{\Sigma}) \qquad \lor \quad (\mathcal{L}(\{w_2\}) = T_{\Sigma})) \qquad \land \\ ((\mathcal{L}(\{w_1\}) = T_{\Sigma}) \qquad \lor \quad (\mathcal{L}(\{v_2\}) = T_{\Sigma})) \qquad \land \\ (\mathcal{L}(\{v_2, w_2\}) = T_{\Sigma}) \qquad \land \\ macrostate$$

Basic Downward Universality Algorithm

The **On-the-fly** algorithm:

- DFS, maintain workset of macrostates.
- Start the algorithm from macrostate F,
- Alternating structure:
 - for all clauses . . .
 - exists a position such that universality holds.

Basic Downward Universality Algorithm

The **On-the-fly** algorithm:

- DFS, maintain workset of macrostates.
- Start the algorithm from macrostate F,
- Alternating structure:
 - for all clauses . . .
 - exists a position such that universality holds.
- Cut the DFS when
 - · there is no transition for a symbol, or
 - macrostate is already in workset.

Optimisations: Antichains

- 1 Cut the DFS on macrostate S' when
 - a smaller macrostate S, $S \subseteq S'$, is already in *workset*,
 - ightharpoonup if S is universal, S' will also be universal.

Optimisations: Antichains

- If a macrostate P is found to be non-universal, cache it;
 - do not expand any new macrostate $P' \subseteq P$,
 - ▶ surely $\mathcal{L}(P') \neq T_{\Sigma}$.

Optimisations: Antichains

3 We wish to perform a similar optimisation as in 2.

Optimisations: Antichains

We wish to perform a similar optimisation as in **2**. However, we cannot simply cache macrostate *R* through which we return in the DFS!

■ Why?

Optimisations: Antichains

We wish to perform a similar optimisation as in **2**.

However, we cannot simply cache macrostate *R* through which we return in the DES!

- Why?
- Universality of R might be falsified on other branches of the DFS!

Optimisations: Antichains

3 Solution: cache the set *Z* for which the universality condition holds, BUT together with the precondition why it holds:

Optimisations: Antichains

3 Solution: cache the set *Z* for which the universality condition holds, BUT together with the precondition why it holds:

■ i.e. we maintain a pair of sets of macrostates (Ant, Con) meaning that Ant ⇒ Con, i.e.

$$\bigwedge_{A \in Ant} U(A) \implies \bigwedge_{C \in Con} U(C),$$

- when the DFS is returning via G, it removes G from Ant and adds G to Con,
- when Ant becomes empty, all sets S from Con are cached.
- If found X, $G \subseteq X$, return.

Optimisations: Antichains + Simulation

- Downward simulation
 - implies inclusion of (downward) tree languages of states,
 - · usually quite rich.

- In **Antichains**, instead of \subseteq use $\preceq_{\mathcal{D}}^{\forall \exists}$.
- further, minimise macrostates w.r.t. \leq_D : $\{p, q, x\} \Rightarrow \{p, x\}$

Experiments

- Comparison of different inclusion checking algorithms
 - down downward, up upward,
 - +s using upward/downward simulation,
 - −o with optimisation 3 (Ant, Con).

	down	down+s	down-o	down-o+s	up	up+s
Winner	36.35%	4.15%	32.20%	3.15%	24.14%	0.00%
Timeouts	32.51 %	18.27%	32.51 %	18.27%	0.00%	0.00%

VATA: A Tree Automata Library

VATA is a new tree automata library that

- supports non-deterministic tree automata,
- provides encodings suitable for different contexts:
 - · explicit, and
 - · semi-symbolic,
- is written in C++,
- is open source and free under GNU GPLv3,
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
 - or (shorter), http://goo.gl/KNpMH

Supported Operations

Supported operations:

- union,
- intersection,
- removing unreachable or useless states and transitions,
- testing language emptiness,
- computing downward and upward simulation,
- simulation-based reduction,
- testing language inclusion,
- import from file/export to file.

Simulations

Explicit:

- \blacksquare downward simulation \leq_D ,
- upward simulation \leq_U .

Work by transforming automaton to labelled transition systems,

- computing simulation on the LTS, [Holík, Šimáček. MEMICS'09],
- which is an improvement of [Ranzato, Tapparo. LICS'07].

Semi-symbolic:

 downward simulation computation based on [Henzinger, Henzinger, Kopke. FOCS'95].

Reduction according to downward simulation.

Conclusion

- A new tree automata library available
 - containing various optimisations of the used algorithms,
 - particularly highly efficient inclusion checking algorithms.
- Support for working with non-deterministic automata.
- Easy to extend with own encoding/operations.
- The library is open source and free under GNU GPLv3.
- Available at

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Future work

- Add new representations of finite word/tree automata,
 - that address particular issues, such as
 - ► large number of states, or
 - fast checking of language inclusion.
- Add missing operations,
 - · development is demand-driven,
 - if you miss something, write to us, the feature may appear soon.

Thank you for your attention.

Questions?