
On Complementation of Nondeterministic
Finite Automata without Full Determinization

Lukáš Holı́k, Ondřej Lengál
Brno University of Technology, Czech Republic

Juraj Major, Adéla Štěpková, Jan Strejček
Masaryk University, Brno, Czech Republic

Research goal

Construct nondeterministic complements of NFAs
smaller than standard deterministic complements.

1/22

Terminology

• nondeterministic finite automaton (NFA) A = (Q,Σ, δ, I, F)

• size of A is the number of states: |A| = |Q|

• for a language L over the alphabet Σ:
the complement of L is co(L) = Σ∗ ∖ L

2/22

Complementation of finite automata

Task: for an NFA A accepting a language L over the alphabet Σ,
find an NFA C accepting the language co(L) = Σ∗ ∖ L

0 1 2 3A

a,b

a a,b a,b

accepts L = {a,b}∗.{a}.{a,b}2

3/22

Standard complementation approach

0 1 2 3A

a,b

a a,b a,b

→ determinize
→ switch accepting and nonaccepting states

= forward powerset complementation

0 01 012 0123

03 02 013 023
det(A)

b

a a

b

a

b

a

b
a

b a
b

a

b

a

b 4/22

Standard complementation approach

0 1 2 3A

a,b

a a,b a,b

→ determinize
→ switch accepting and nonaccepting states

= forward powerset complementation

0 01 012 0123

03 02 013 023
co(det(A))

b

a a

b

a

b

a

b
a

b a
b

a

b

a

b 4/22

Standard complementation approach

0 1 2 3A

a,b

a a,b a,b

→ determinize
→ switch accepting and nonaccepting states

= forward powerset complementation

0 01 012 0123

03 02 013 023
co(det(A))

b

a a

b

a

b

a

b
a

b a
b

a

b

a

b 4/22

Problem of the standard approach

exponential upper bound:

• deterministic complement can have up to 2|Q| states
• the bound is optimal

generalization of our example: An accepting Ln = {a,b}∗.{a}.{a,b}n

0 1 n+ 1

a,b

a a,b a,b

An: n+ 2 states det(An): 2n+1 states
(also after minimization)

5/22

Problem of the standard approach

exponential upper bound:

• deterministic complement can have up to 2|Q| states
• the bound is optimal

generalization of our example: An accepting Ln = {a,b}∗.{a}.{a,b}n

0 1 n+ 1

a,b

a a,b a,b

An: n+ 2 states det(An): 2n+1 states
(also after minimization)

5/22

We can do better

0 1 2 3A

a,b

a a,b a,b

0 1 2 3

a,b

b a,b a,b

. . . this is also a complement of A

How to obtain it algorithmically?

6/22

We can do better

0 1 2 3A

a,b

a a,b a,b

0 1 2 3

a,b

b a,b a,b

. . . this is also a complement of A

How to obtain it algorithmically?

6/22

Employing the reverse

reverse → determinize → complement → reverse

0

1

2

3

A

a,b

a

a,b

a,b

0

1

2

3

rev(A)

a,b

a

a,b

a,b

{0}

{1}

∅

{2}

{3}

det(rev(A))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

co(det(rev(A)))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

rev(co(det(rev(A))))

a,b a,b

a b

a,b

a,b

7/22

Employing the reverse

reverse → determinize → complement → reverse

0

1

2

3

A

a,b

a

a,b

a,b

0

1

2

3

rev(A)

a,b

a

a,b

a,b

{0}

{1}

∅

{2}

{3}

det(rev(A))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

co(det(rev(A)))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

rev(co(det(rev(A))))

a,b a,b

a b

a,b

a,b

7/22

Employing the reverse

reverse → determinize → complement → reverse

0

1

2

3

A

a,b

a

a,b

a,b

0

1

2

3

rev(A)

a,b

a

a,b

a,b

{0}

{1}

∅

{2}

{3}

det(rev(A))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

co(det(rev(A)))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

rev(co(det(rev(A))))

a,b a,b

a b

a,b

a,b

7/22

Employing the reverse

reverse → determinize → complement → reverse

0

1

2

3

A

a,b

a

a,b

a,b

0

1

2

3

rev(A)

a,b

a

a,b

a,b

{0}

{1}

∅

{2}

{3}

det(rev(A))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

co(det(rev(A)))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

rev(co(det(rev(A))))

a,b a,b

a b

a,b

a,b

7/22

Employing the reverse

reverse → determinize → complement → reverse

0

1

2

3

A

a,b

a

a,b

a,b

0

1

2

3

rev(A)

a,b

a

a,b

a,b

{0}

{1}

∅

{2}

{3}

det(rev(A))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

co(det(rev(A)))

a,b a,b

a b

a,b

a,b

{0}

{1}

∅

{2}

{3}

rev(co(det(rev(A))))

a,b a,b

a b

a,b

a,b

7/22

Reverse powerset complementation

• can produce nondeterministic complements
→ smaller complements for some automata

• for some automata, forward powerset is better

8/22

Complementing automata with specific structure

two methods: sequential and gate complementation

• exploit the specific structure of automata to build smaller
complements

• component-based: use complements of parts of an NFA to
compose a complement of the whole NFA

• core ideas shown in a simple setting

9/22

Setting

NFA A composed of two disjoint NFAs A1, A2 (components)
connected with a single transfer transition

0 1 2 3 4
a,b a

a,b

a a,b

A1 A2

A

0 1

A1

2 3 4

A2

a,b

a,b

a a,b

A1 accepts L1 A2 accepts L2

A accepts L1.{a}.L2

10/22

Sequential complementation: idea

Observation: co(L1.{a}.L2) consists of all words w, such that:
for all u, v satisfying uav = w, if u ∈ L1 then v ∈ co(L2)

0 1

A1

2 3 4

A2

a,b a

a,b

a a,b

0 1

s

det(A1)

5 6 7

complement C2 of A2 (can be NFA)

a,b

a,b

a,b

a

a,b

b a,b

→ run det(A1) on w
→ when a prefix u ∈ L1 is read, start an instance of C2 under a

checking v ∈ co(L2)

11/22

Sequential complementation: idea

Observation: co(L1.{a}.L2) consists of all words w, such that:
for all u, v satisfying uav = w, if u ∈ L1 then v ∈ co(L2)

0 1

A1

2 3 4

A2

a,b a

a,b

a a,b

0 1

s

det(A1)

5 6 7

complement C2 of A2 (can be NFA)

a,b

a,b

a,b

a

a,b

b a,b

→ run det(A1) on w
→ when a prefix u ∈ L1 is read, start an instance of C2 under a

checking v ∈ co(L2)

11/22

Sequential complementation: idea

Observation: co(L1.{a}.L2) consists of all words w, such that:
for all u, v satisfying uav = w, if u ∈ L1 then v ∈ co(L2)

0 1

A1

2 3 4

A2

a,b a

a,b

a a,b

0 1

s

det(A1)

5 6 7

complement C2 of A2 (can be NFA)

a,b

a,b

a,b

a

a,b

b a,b

→ run det(A1) on w
→ when a prefix u ∈ L1 is read, start an instance of C2 under a

checking v ∈ co(L2)

11/22

Sequential complementation: idea

Observation: co(L1.{a}.L2) consists of all words w, such that:
for all u, v satisfying uav = w, if u ∈ L1 then v ∈ co(L2)

0 1

s

det(A1)

5 6 7

complement C2 of A2 (can be NFA)

a,b

a,b

a,b

a

a,b

b a,b

→ run det(A1) on w
→ when a prefix u ∈ L1 is read, start an instance of C2 under a

checking v ∈ co(L2)

11/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2

12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
initial state of C: initial state of det(A1) + no running instance of C2

12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
transitions: transition in det(A)

+ transitions of running instances of C2
+ possible new instances of C2 12/22

Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
final states: C accepts when all current instances of C2 accept

12/22

Sequential complementation: properties

• preserves nondeterminism
• size of C depends on the size of det(A1) and C2

0 n n+ 1 n+ 2 2n+ 2a

a,b

aa,b a,b a,b a,b

NFA accepting Ln = {a,b}n.{a}.{a,b}∗.{a}.{a,b}n

• sequential complement: 2n+ 3 states
• forward and reverse powerset complements: 2n+1 + n+ 1 states

13/22

Sequential complementation: properties

• preserves nondeterminism
• size of C depends on the size of det(A1) and C2

0 n n+ 1 n+ 2 2n+ 2a

a,b

aa,b a,b a,b a,b

NFA accepting Ln = {a,b}n.{a}.{a,b}∗.{a}.{a,b}n

• sequential complement: 2n+ 3 states
• forward and reverse powerset complements: 2n+1 + n+ 1 states

13/22

Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition

under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2

14/22

Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2

14/22

Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

gate symbol

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2

14/22

Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

gate

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2

14/22

Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2

14/22

Gate complementation: idea

Observation: the first c in a word w must be read on the gate

w belongs to co(L1.{c}.L2) if:

1. w does not contain any c, or
2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1, or
3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

A1

uses Σ∖ {c}

A2A
c

×u × c ×v

15/22

Gate complementation: idea

Observation: the first c in a word w must be read on the gate

w belongs to co(L1.{c}.L2) if:
1. w does not contain any c, or

2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1, or
3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

A1

uses Σ∖ {c}

A2A
c

×u × c ×v

15/22

Gate complementation: idea

Observation: the first c in a word w must be read on the gate

w belongs to co(L1.{c}.L2) if:
1. w does not contain any c, or
2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1, or

3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

A1

uses Σ∖ {c}

A2A
c

×u × c ×v

15/22

Gate complementation: idea

Observation: the first c in a word w must be read on the gate

w belongs to co(L1.{c}.L2) if:
1. w does not contain any c, or
2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1, or
3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

A1

uses Σ∖ {c}

A2A
c

×u × c ×v

15/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c}

sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t

C2

uses Σ

c

Σ∖{c}

C

3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

1. w does not contain any c

16/22

Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C

|C| = |C1|+ |C2|+ 2

16/22

More in the paper!

• generalizations of sequential and gate complementation
• more complexity results
• heuristic to choose between forward and reverse powerset

generalized complementation problem:
port NFA = an NFA with multiple sets of initial and final states

17/22

More in the paper!

• generalizations of sequential and gate complementation
• more complexity results
• heuristic to choose between forward and reverse powerset

generalized complementation problem:
port NFA = an NFA with multiple sets of initial and final states

17/22

Implementation

• AliGater: a Python tool
• all algorithms in their general versions
• backend: mata library 1

• NFA reduction applied on results (RABIT/Reduce) 2

1D. Chocholatý et al. Mata: A Fast and Simple Finite Automata Library. TACAS’24.
2R. Mayr and L. Clemente. Advanced automata minimization. POPL’13.

18/22

Experimental settings

• 9,450 benchmarks from diverse applications 1

• all plots compare the complement sizes (number of states)

• TO = timeout (5 min), MO = out of memory (8 GiB)

1VeriFIT. nfa-bench: Extensive benchmark for reasoning about regular properties.
https://github.com/VeriFIT/nfa-bench.

19/22

https://github.com/VeriFIT/nfa-bench

Experimental results: forward vs. reverse powerset

101 103 105 TOMO
fwd powerset

101

103

105

TO
MO

re
v

po
we

rs
et

• each method very effective for some automata
• out of resources while the other finishes

20/22

Experimental results: sequential + gate

101 103 105 TO+MO
best of: fwd / rev powerset + min

101

103

105

TO+MO

be
st

 o
f:

se
q

/ g
at

e

• can give significantly smaller results than powerset
• resource demanding, many timeouts

21/22

Conclusion

101 103 105 TO+MO
fwd powerset + min

101

103

105

TO+MO
be

st
 o

f:
al

l t
ec

hn
iq

ue
s

Technical report

Implementation

NFA complementation still has room for improvement:
let’s explore it further!

22/22

https://arxiv.org/pdf/2507.03439
https://gitlab.fi.muni.cz/xstepkov/aligater/

Conclusion

101 103 105 TO+MO
fwd powerset + min

101

103

105

TO+MO
be

st
 o

f:
al

l t
ec

hn
iq

ue
s

Technical report

Implementation

NFA complementation still has room for improvement:
let’s explore it further!

22/22

https://arxiv.org/pdf/2507.03439
https://gitlab.fi.muni.cz/xstepkov/aligater/

How hard are the benchmarks to determinize?

100 101 102 103 104 105 106 TO+MO
input size

100

101

102

103

104

105

106

TO+MO

fw
d

po
we

rs
et

 +
 m

in

Comparison of forward and reverse powerset

101 103 105 TOMO
fwd powerset

101

103

105

TO
MO

re
v

po
we

rs
et

101 103 105 TOMO
fwd powerset + min

101

103

105

TO
MO

re
v

po
we

rs
et

 +
 m

in

	Appendix

