On Complementation of Nondeterministic Finite Automata without Full Determinization

Lukáš Holík, Ondřej Lengál Brno University of Technology, Czech Republic

Juraj Major, **Adéla Štěpková**, Jan Strejček Masaryk University, Brno, Czech Republic

Research goal

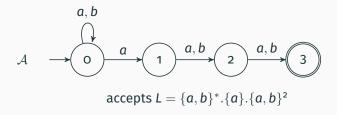
Construct nondeterministic complements of NFAs smaller than standard deterministic complements.

Terminology

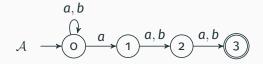
- nondeterministic finite automaton (NFA) $\mathcal{A} = (Q, \Sigma, \delta, I, F)$
- size of ${\mathcal A}$ is the number of states: $|{\mathcal A}| = |{\mathbf Q}|$
- for a language L over the alphabet Σ : the **complement** of L is $co(L) = \Sigma^* \setminus L$

Complementation of finite automata

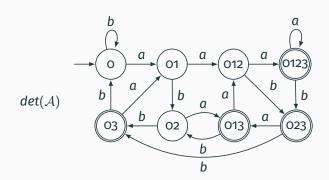
Task: for an NFA \mathcal{A} accepting a language L over the alphabet Σ , find an NFA \mathcal{C} accepting the language $co(L) = \Sigma^* \setminus L$



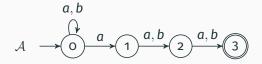
Standard complementation approach



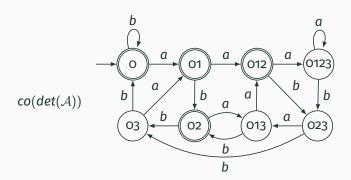
- → determinize
- \rightarrow switch accepting and nonaccepting states



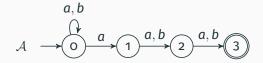
Standard complementation approach



- \rightarrow determinize
- \rightarrow switch accepting and nonaccepting states

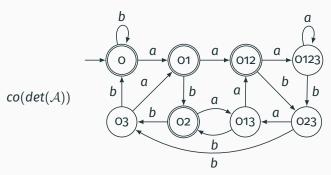


Standard complementation approach



- \rightarrow determinize
- \rightarrow switch accepting and nonaccepting states

= forward powerset complementation



Problem of the standard approach

exponential upper bound:

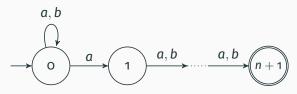
- deterministic complement can have up to 2^{|Q|} states
- · the bound is optimal

Problem of the standard approach

exponential upper bound:

- deterministic complement can have up to 2^{|Q|} states
- · the bound is optimal

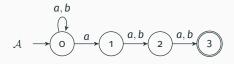
generalization of our example: A_n accepting $L_n = \{a,b\}^*.\{a\}.\{a,b\}^n$

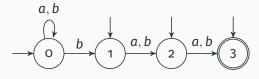


 A_n : n + 2 states

 $det(A_n)$: 2ⁿ⁺¹ states (also after minimization)

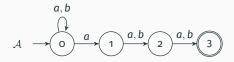
We can do better





...this is also a complement of $\ensuremath{\mathcal{A}}$

We can do better

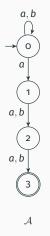




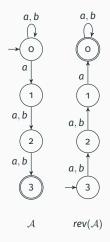
...this is also a complement of ${\cal A}$

How to obtain it algorithmically?

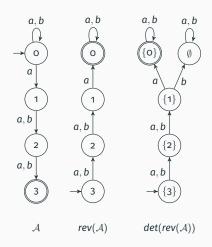
 $reverse \rightarrow determinize \rightarrow complement \rightarrow reverse$



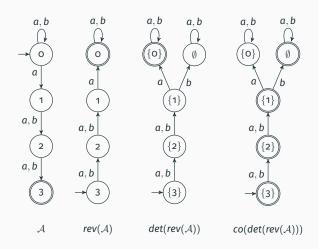
 $\textcolor{reverse}{\mathsf{reverse}} \rightarrow \mathsf{determinize} \rightarrow \mathsf{complement} \rightarrow \mathsf{reverse}$



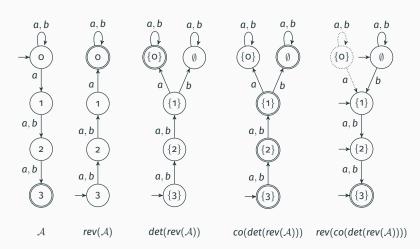
 $reverse \rightarrow \frac{\text{determinize}}{\text{determinize}} \rightarrow \text{complement} \rightarrow \text{reverse}$



 $\mathsf{reverse} \to \mathsf{determinize} \to \mathsf{complement} \to \mathsf{reverse}$



 $reverse \rightarrow determinize \rightarrow complement \rightarrow reverse$



Reverse powerset complementation

- can produce nondeterministic complements
 → smaller complements for some automata
- · for some automata, forward powerset is better

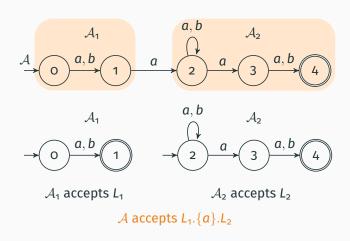
Complementing automata with specific structure

two methods: sequential and gate complementation

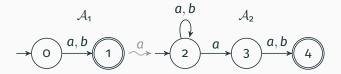
- exploit the specific structure of automata to build smaller complements
- component-based: use complements of parts of an NFA to compose a complement of the whole NFA
- core ideas shown in a simple setting

Setting

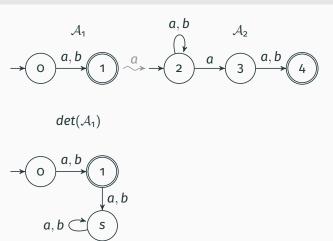
NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 (components) connected with a single *transfer* transition



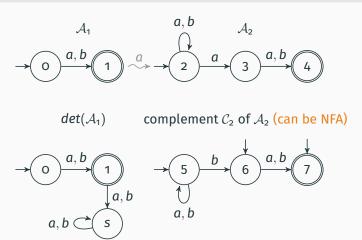
Observation: $co(L_1.\{a\}.L_2)$ consists of all words w, such that: for all u, v satisfying uav = w, if $u \in L_1$ then $v \in co(L_2)$



Observation: $co(L_1.\{a\}.L_2)$ consists of all words w, such that: for all u, v satisfying uav = w, if $u \in L_1$ then $v \in co(L_2)$

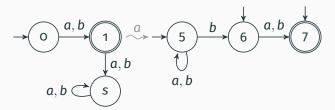


Observation: $co(L_1.\{a\}.L_2)$ consists of all words w, such that: for all u, v satisfying uav = w, if $u \in L_1$ then $v \in co(L_2)$

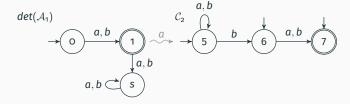


Observation: $co(L_1.\{a\}.L_2)$ consists of all words w, such that: for all u, v satisfying uav = w, if $u \in L_1$ then $v \in co(L_2)$

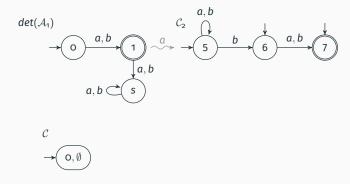
 $det(A_1)$ complement C_2 of A_2 (can be NFA)



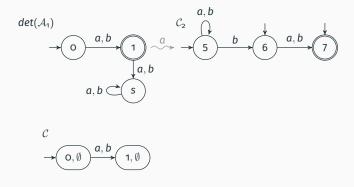
- \rightarrow run $det(A_1)$ on w
- \rightarrow when a prefix $u \in L_1$ is read, start an instance of C_2 under a checking $v \in co(L_2)$



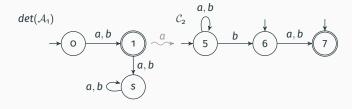
state of C: state of $det(A_1)$ + states of current instances of C_2

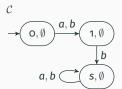


state of \mathcal{C} : state of $det(\mathcal{A}_1)$ + states of current instances of \mathcal{C}_2 **initial state of** \mathcal{C} : initial state of $det(\mathcal{A}_1)$ + no running instance of \mathcal{C}_2

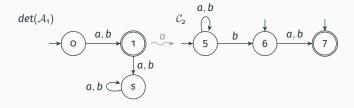


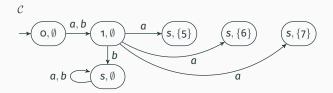
- + transitions of running instances of C_2
- + possible new instances of C_2



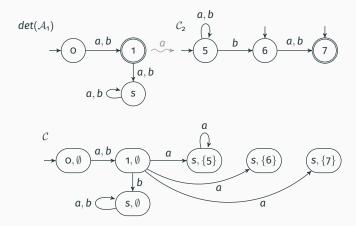


- + transitions of running instances of C_2
- + possible new instances of C_2

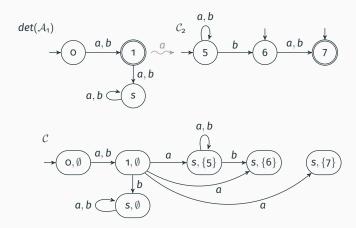




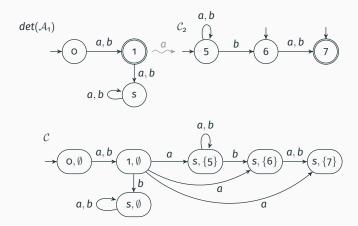
- + transitions of running instances of C_2
- + possible new instances of C_2



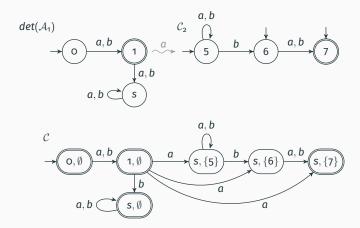
- + transitions of running instances of C_2
- + possible new instances of C_2



- + transitions of running instances of C_2
- + possible new instances of C_2



- + transitions of running instances of C_2
- + possible new instances of C_2



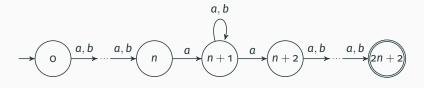
state of C: state of $det(A_1)$ + states of current instances of C_2 **final states:** C accepts when all current instances of C_2 accept

Sequential complementation: properties

- · preserves nondeterminism
- size of ${\mathcal C}$ depends on the size of $\text{det}({\mathcal A}_1)$ and ${\mathcal C}_2$

Sequential complementation: properties

- · preserves nondeterminism
- size of ${\mathcal C}$ depends on the size of $\text{det}({\mathcal A}_1)$ and ${\mathcal C}_2$

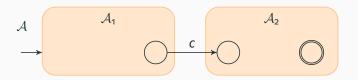


NFA accepting $L_n = \{a, b\}^n.\{a\}.\{a, b\}^*.\{a\}.\{a, b\}^n$

- sequential complement: 2n + 3 states
- forward and reverse powerset complements: $2^{n+1} + n + 1$ states

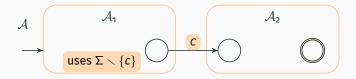
Gate complementation: setting

NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 connected with a single transition



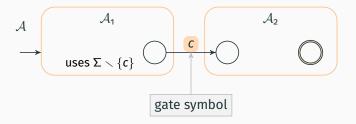
Gate complementation: setting

NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 connected with a single transition under a symbol not in \mathcal{A}_1



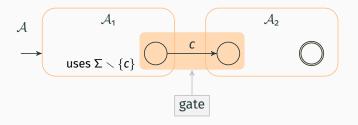
Gate complementation: setting

NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 connected with a single transition under a symbol not in \mathcal{A}_1



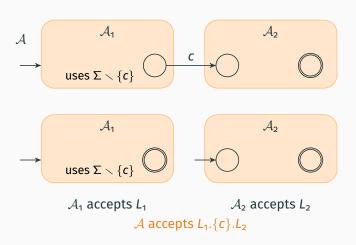
Gate complementation: setting

NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 connected with a single transition under a symbol not in \mathcal{A}_1

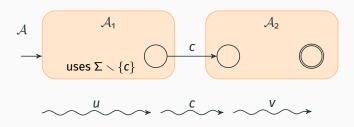


Gate complementation: setting

NFA \mathcal{A} composed of two disjoint NFAs \mathcal{A}_1 , \mathcal{A}_2 connected with a single transition under a symbol not in \mathcal{A}_1



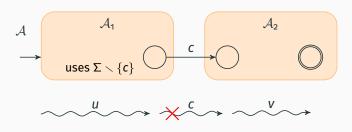
Observation: the first c in a word w must be read on the gate w belongs to $co(L_1, \{c\}, L_2)$ if:



Observation: the first c in a word w must be read on the gate

w belongs to $co(L_1, \{c\}, L_2)$ if:

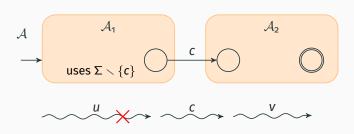
1. w does not contain any c, or



Observation: the first *c* in a word *w* must be read on the gate

w belongs to $co(L_1.\{c\}.L_2)$ if:

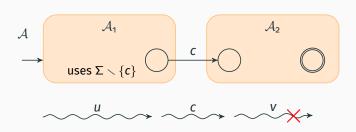
- 1. w does not contain any c, or
- 2. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $u \notin L_1$, or

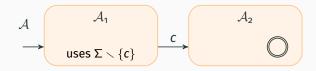


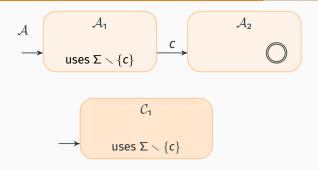
Observation: the first *c* in a word *w* must be read on the gate

w belongs to $co(L_1.\{c\}.L_2)$ if:

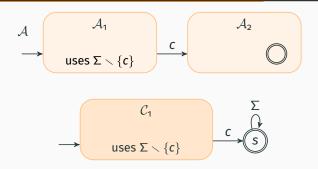
- 1. w does not contain any c, or
- 2. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $u \notin L_1$, or
- 3. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $v \notin L_2$



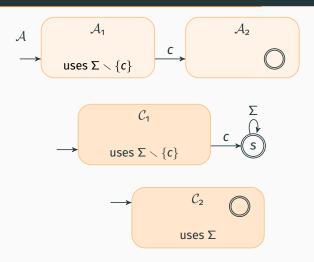




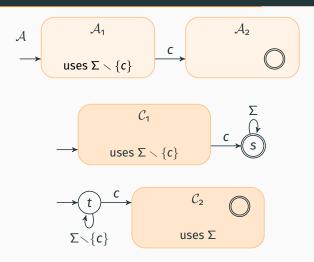
2. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $u \notin L_1$



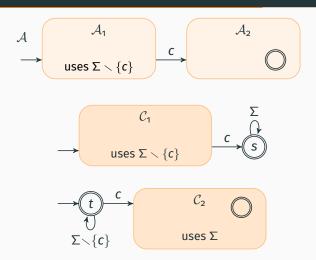
2. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $u \notin L_1$



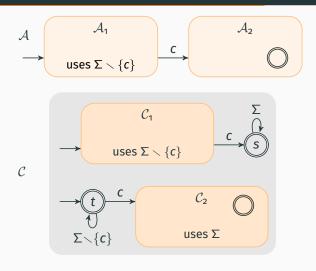
3. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $v \notin L_2$



3. w = ucv where $u \in (\Sigma \setminus \{c\})^*$ and $v \notin L_2$



1. w does not contain any c



$$|\mathcal{C}|=|\mathcal{C}_1|+|\mathcal{C}_2|+2$$

More in the paper!

- · generalizations of sequential and gate complementation
- · more complexity results
- · heuristic to choose between forward and reverse powerset

More in the paper!

- · generalizations of sequential and gate complementation
- · more complexity results
- · heuristic to choose between forward and reverse powerset

generalized complementation problem:

port NFA = an NFA with multiple sets of initial and final states

Implementation

- AliGater: a Python tool
- all algorithms in their general versions
- backend: mata library 1
- NFA reduction applied on results (RABIT/Reduce) 2

¹D. Chocholatý et al. **Mata: A Fast and Simple Finite Automata Library.** TACAS'24.

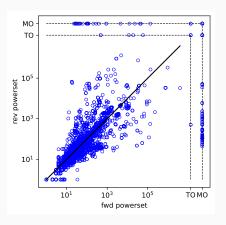
²R. Mayr and L. Clemente. **Advanced automata minimization.** POPL'13.

Experimental settings

- 9,450 benchmarks from diverse applications ¹
- all plots compare the complement sizes (number of states)
- TO = timeout (5 min), MO = out of memory (8 GiB)

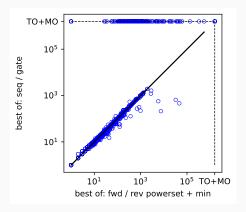
¹VeriFIT. nfa-bench: Extensive benchmark for reasoning about regular properties. https://github.com/VeriFIT/nfa-bench.

Experimental results: forward vs. reverse powerset



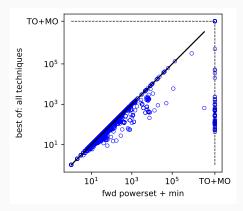
- · each method very effective for some automata
- · out of resources while the other finishes

Experimental results: sequential + gate

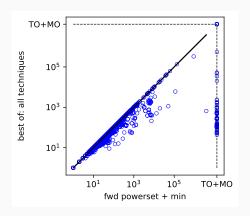


- · can give significantly smaller results than powerset
- resource demanding, many timeouts

Conclusion



Conclusion

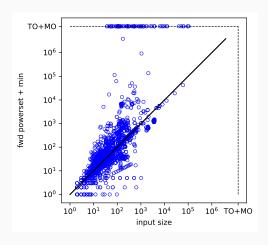


Technical report

Implementation

NFA complementation still has room for improvement: **let's explore it further!**

How hard are the benchmarks to determinize?



Comparison of forward and reverse powerset

