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Research goal

Construct nondeterministic complements of NFAs
smaller than standard deterministic complements.
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Terminology

• nondeterministic finite automaton (NFA) A = (Q,Σ, δ, I, F)

• size of A is the number of states: |A| = |Q|

• for a language L over the alphabet Σ:
the complement of L is co(L) = Σ∗ ∖ L
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Complementation of finite automata

Task: for an NFA A accepting a language L over the alphabet Σ,
find an NFA C accepting the language co(L) = Σ∗ ∖ L

0 1 2 3A

a,b

a a,b a,b

accepts L = {a,b}∗.{a}.{a,b}2
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Standard complementation approach

0 1 2 3A

a,b

a a,b a,b

→ determinize
→ switch accepting and nonaccepting states

= forward powerset complementation
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Problem of the standard approach

exponential upper bound:

• deterministic complement can have up to 2|Q| states
• the bound is optimal

generalization of our example: An accepting Ln = {a,b}∗.{a}.{a,b}n

0 1 n+ 1

a,b

a a,b a,b

An: n+ 2 states det(An): 2n+1 states
(also after minimization)
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We can do better

0 1 2 3A

a,b

a a,b a,b

0 1 2 3

a,b

b a,b a,b

. . . this is also a complement of A

How to obtain it algorithmically?
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Employing the reverse

reverse → determinize → complement → reverse
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∅
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{3}

det(rev(A))
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Reverse powerset complementation

• can produce nondeterministic complements
→ smaller complements for some automata

• for some automata, forward powerset is better
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Complementing automata with specific structure

two methods: sequential and gate complementation

• exploit the specific structure of automata to build smaller
complements

• component-based: use complements of parts of an NFA to
compose a complement of the whole NFA

• core ideas shown in a simple setting
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Setting

NFA A composed of two disjoint NFAs A1, A2 (components)
connected with a single transfer transition

0 1 2 3 4
a,b a

a,b

a a,b

A1 A2

A

0 1

A1

2 3 4

A2

a,b

a,b

a a,b

A1 accepts L1 A2 accepts L2

A accepts L1.{a}.L2
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Sequential complementation: idea

Observation: co(L1.{a}.L2) consists of all words w, such that:
for all u, v satisfying uav = w, if u ∈ L1 then v ∈ co(L2)

0 1

A1

2 3 4

A2

a,b a

a,b

a a,b

0 1

s

det(A1)

5 6 7

complement C2 of A2 (can be NFA)

a,b

a,b

a,b

a

a,b

b a,b

→ run det(A1) on w
→ when a prefix u ∈ L1 is read, start an instance of C2 under a

checking v ∈ co(L2)
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Sequential complementation: construction

0 1

s

det(A1)

5 6 7

C2

a,b

a,b

a,b

a,b

b a,ba

0, ∅ 1, ∅

s, ∅

s, {5} s, {6} s, {7}

C
a,b

b

a,b

a

a
a

aa,b

b a,b

state of C: state of det(A1) + states of current instances of C2
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Sequential complementation: construction
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Sequential complementation: properties

• preserves nondeterminism
• size of C depends on the size of det(A1) and C2

0 n n+ 1 n+ 2 2n+ 2a

a,b

aa,b a,b a,b a,b

NFA accepting Ln = {a,b}n.{a}.{a,b}∗.{a}.{a,b}n

• sequential complement: 2n+ 3 states
• forward and reverse powerset complements: 2n+1 + n+ 1 states
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Gate complementation: setting

NFA A composed of two disjoint NFAs A1, A2
connected with a single transition

under a symbol not in A1

A1

uses Σ∖ {c}

A2A
c

A1

uses Σ∖ {c}

A2

A1 accepts L1 A2 accepts L2

A accepts L1.{c}.L2
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Gate complementation: idea

Observation: the first c in a word w must be read on the gate

w belongs to co(L1.{c}.L2) if:

1. w does not contain any c, or
2. w = ucv where u ∈ (Σ∖ {c})∗ and u /∈ L1, or
3. w = ucv where u ∈ (Σ∖ {c})∗ and v /∈ L2

A1

uses Σ∖ {c}

A2A
c

×u × c ×v
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Gate complementation: construction

A1

uses Σ∖ {c}

A2A
c

C1

uses Σ∖ {c} sc

Σ

t C2

uses Σ

c

Σ∖{c}

C
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Gate complementation: construction

A1

uses Σ∖ {c}
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|C| = |C1|+ |C2|+ 2

16/22



More in the paper!

• generalizations of sequential and gate complementation
• more complexity results
• heuristic to choose between forward and reverse powerset

generalized complementation problem:
port NFA = an NFA with multiple sets of initial and final states
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Implementation

• AliGater: a Python tool
• all algorithms in their general versions
• backend: mata library 1

• NFA reduction applied on results (RABIT/Reduce) 2

1D. Chocholatý et al. Mata: A Fast and Simple Finite Automata Library. TACAS’24.
2R. Mayr and L. Clemente. Advanced automata minimization. POPL’13.
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Experimental settings

• 9,450 benchmarks from diverse applications 1

• all plots compare the complement sizes (number of states)

• TO = timeout (5 min), MO = out of memory (8 GiB)

1VeriFIT. nfa-bench: Extensive benchmark for reasoning about regular properties.
https://github.com/VeriFIT/nfa-bench.
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Experimental results: forward vs. reverse powerset

101 103 105 TOMO
fwd powerset
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• each method very effective for some automata
• out of resources while the other finishes
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Experimental results: sequential + gate

101 103 105 TO+MO
best of: fwd / rev powerset + min
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• can give significantly smaller results than powerset
• resource demanding, many timeouts
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Conclusion
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Technical report

Implementation

NFA complementation still has room for improvement:
let’s explore it further!
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How hard are the benchmarks to determinize?
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Comparison of forward and reverse powerset
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