
Formal Analysis and Verification
FAV 2014/2015

Ondřej Lengál, Tomáš Vojnar
{ilengal,vojnar}@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno

Abstract Interpretation

Introduction

• Compared to model checking in which the stress is put on a systematic execution of a
system being verified (or its model), the emphasis in static analysis is on minimization
of the amount of execution of the code. It is either not executed at all (the case of
looking for bug patterns) or just on some abstract level, typically with an in advance
fixed abstraction (data flow analysis, abstract interpretation, . . .).

• However, the borderline between model checking and static analysis is not sharp
(especially when considering abstract interpretation and model checking based on
predicate abstraction).

• Many static analyses are such that they can be applied to parts of code without the
need to describe their environment.

• Static analysis approaches: bug pattern analysis, type analysis, data flow analysis, . . . ,
abstract interpretation, (and sometimes even model checking).

3/30

Static Analyses

• Many different classes of programs:

• control-intensive programs,
• digital signal processing,
• programs manipulating dynamic memory,
• programs with integers, . . .

• To make an analysis efficient (effective), some form of abstraction is often needed.

• An analysis successful for one class may (and is very likely to) fail for a different one
(too much imprecision, inefficiency, divergence).

• Analyses are tailored for specific classes of programs

• the need to prove soundness (completeness) of each analysis.

4/30

Abstract Interpretation — A Motivating Example

Listing 1: SQL Input Sanitization

void sanitize(char* query)

{

for (size_t i = 0; i < strlen(query); ++i)

{

if (’\’’ == query[i])

query[i] = ’_’;

}

if (! strcmp(query , "\’ OR 1==1"))

ERROR ();

}

• The model checking approach — check for all values of query unfeasible!

• The abstract interpretation approach — find a suitable abstract domain for query.

5/30

Abstract Interpretation — A Motivating Example

Listing 2: SQL Input Sanitization

void sanitize(char* query)

{

for (size_t i = 0; i < strlen(query); ++i)

{

if (’\’’ == query[i])

query[i] = ’_’;

}

if (! strcmp(query , "\’ OR 1==1"))

ERROR ();

}

• The model checking approach — check for all values of query unfeasible!

• The abstract interpretation approach — find a suitable abstract domain for query.

5/30

Abstract Interpretation

• Introduced by Patrick and Radhia Cousot at POPL’77.

• A general framework for static analyses.

• Concrete analyses are created by providing specific components (abstract domain,
abstract transformers, . . .) to the framework.

• Abstract interpretation transforms a program into an abstract program over an
abstract domain and analyses this (cf. predicate abstraction).

• When certain properties of the components are met, the analysis is guaranteed to be
sound.

6/30

Ingredients of Abstract Interpretation

• Abstract domain

• program states at program locations are represented using abstract contexts.

• Abstract transformers

• for each program operation there is a corresponding transformer that represents
the effect of the operation performed on an abstract context.

• Join operator

• combines abstract contexts from several branches into a single one.

• Widening

• performed on a sequence of abstract contexts appearing at a given location to
accelerate obtaining a fixpoint.

• Narrowing

• may be used to refine the result of widening.

7/30

Abstract Interpretation — formally

• A semilattice is a poset with a join (least upper bound, supremum) for every finite
subset of its base set.

• Abstract interpretation I of a program P with the instruction set Instr is a tuple

I = (Q, ◦,v,>,⊥, τ)

where

• Q is the abstract domain (domain of abstract contexts),
• > ∈ Q is the supremum of Q,
• ⊥ ∈ Q is the infimum of Q,
• ◦ : Q × Q → Q is the join operator for accumulation of abstract contexts,

(Q, ◦,>) is a complete semilattice,
• (v) ⊆ Q × Q is an ordering defined as x v y ⇐⇒ x ◦ y = y in (Q, ◦,>),
• τ : Instr× Q → Q defines the interpretation of abstract transformers.

• The soundness of abstract interpretation is guaranteed using Galois connections.

8/30

Abstract Interpretation — formally

• A semilattice is a poset with a join (least upper bound, supremum) for every finite
subset of its base set.

• Abstract interpretation I of a program P with the instruction set Instr is a tuple

I = (Q, ◦,v,>,⊥, τ)

where

• Q is the abstract domain (domain of abstract contexts),
• > ∈ Q is the supremum of Q,
• ⊥ ∈ Q is the infimum of Q,
• ◦ : Q × Q → Q is the join operator for accumulation of abstract contexts,

(Q, ◦,>) is a complete semilattice,
• (v) ⊆ Q × Q is an ordering defined as x v y ⇐⇒ x ◦ y = y in (Q, ◦,>),
• τ : Instr× Q → Q defines the interpretation of abstract transformers.

• The soundness of abstract interpretation is guaranteed using Galois connections.

8/30

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = 〈P,≤〉 and Q = 〈Q,v〉 are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) v q

• In abstract interpretation, Q is the abstract domain:

concrete contexts abstract contexts

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x = 1, y = 0},

{x = 2, y = 0},

{x = 3, y = 0}, . . . ,

{x = 0, y = 1},

{x = 0, y = 2},

{x = 0, y = 3}, . . . }

{{x ≥ 1, y = 0},

{x = 0, y ≥ 1}}

9/30

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = 〈P,≤〉 and Q = 〈Q,v〉 are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) v q

• In abstract interpretation, Q is the abstract domain:

concrete contexts abstract contexts

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x = 1, y = 0},

{x = 2, y = 0},

{x = 3, y = 0}, . . . ,

{x = 0, y = 1},

{x = 0, y = 2},

{x = 0, y = 3}, . . . }

{{x ≥ 1, y = 0},

{x = 0, y ≥ 1}}

9/30

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = 〈P,≤〉 and Q = 〈Q,v〉 are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) v q

• In abstract interpretation, Q is the abstract domain:

concrete contexts abstract contexts

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x = 1, y = 0},

{x = 2, y = 0},

{x = 3, y = 0}, . . . ,

{x = 0, y = 1},

{x = 0, y = 2},

{x = 0, y = 3}, . . . }

{{x ≥ 1, y = 0},

{x = 0, y ≥ 1}}

9/30

Galois Connections

• Implication: if abstraction and concretization functions of an abstract interpretation
form a Galois connection, the abstract interpretation may only over-approximate
(never under-approximate) ⇒ it is sound.

Proof.
α(p) v q ⇐⇒ p ≤ γ(q) ⇒

⇒ α(p) = q ⇒ p ≤ γ(q) ⇒
⇒ α(p) = q ⇒ p ≤ γ(α(p))

P

concrete domain

Q

abstract domain

p q

p′

≤

α

γ

• Moreover, each instruction i from Instr and a corresponding abstract transformer τi
need to respect the Galois connection:

α(i(p1, . . . , pn)) v τi (α(p1), . . . , α(pn)).

10/30

Galois Connections

• Implication: if abstraction and concretization functions of an abstract interpretation
form a Galois connection, the abstract interpretation may only over-approximate
(never under-approximate) ⇒ it is sound.

Proof.
α(p) v q ⇐⇒ p ≤ γ(q) ⇒

⇒ α(p) = q ⇒ p ≤ γ(q) ⇒
⇒ α(p) = q ⇒ p ≤ γ(α(p))

P

concrete domain

Q

abstract domain

p q

p′

≤

α

γ

• Moreover, each instruction i from Instr and a corresponding abstract transformer τi
need to respect the Galois connection:

α(i(p1, . . . , pn)) v τi (α(p1), . . . , α(pn)).

10/30

Fixpoint Approximation

• In some cases (e.g., loops), computation of the most precise abstract fixpoint is not
generally guaranteed to terminate (consider id as the abstraction function).

• To guarantee termination, the fixpoint can be approximated. This is done using the
following two operations:

• widening: performs an over-approximation of a fixpoint,
• narrowing: refines an approximation of a fixpoint.

• Neither widening nor narrowing are necessary, but at least widening is often
convenient. Narrowing may be sometimes missing (e.g., in polyhedral analysis).

11/30

Widening

• Let I = (Q, ◦,v,>,⊥, τ) be an abstract interpretation of a program.

• The binary widening operation O is defined as:

• O : Q × Q → Q,
• ∀C ,D ∈ Q : (C ◦ D) v (COD),
• for all infinite sequences (C0, . . . ,Cn, . . .) ∈ Qω , it holds that the infinite

sequence (s0, . . . , sn, . . .) defined recursively as

s0 = C0,

sn = sn−1OCn

is not strictly increasing (and because the result of O is an upper bound, the
sequence eventually stabilizes).

• Widening can be applied later in the computation, the later it is applied the more
precise is the result (but the computation takes longer time).

12/30

Narrowing

• Let I = (Q, ◦,v,>,⊥, τ) be an abstract interpretation of a program.

• The binary narrowing operation M is defined as:

• M: Q × Q → Q,
• ∀C ,D ∈ Q : C w D ⇒ (C w (C M D) w D),
• for all infinite sequences (C0, . . . ,Cn, . . .) ∈ Qω , it holds that the infinite

sequence (s0, . . . , sn, . . .) defined recursively as

s0 = C0,

sn = sn−1 M Cn

is not strictly decreasing (and because the result of C M D is a lower bound of
C , the sequence eventually stabilizes provided that the input sequence is not
strictly increasing).

• Narrowing is performed only after widening.

13/30

Representation of a Program

• We choose (deterministic) finite flowcharts as a language independent representation
of programs.

• Finite flowchart is a directed graph with 5 types of nodes:

• entries,
• assignments,
• tests,
• junctions,
• exits.

• Abstract interpretation iteratively computes abstract contexts for each edge of the
flowchart.

• An equation is associated with each edge of the flowchart according to the type of the
tail node of the edge.

14/30

Representation of a Program
• Entry: denotes the entry point of a program. CO = >

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI)

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two context are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI)

<Cond>

CI
Cfalse

Ctrue

15/30

Representation of a Program
• Entry: denotes the entry point of a program. CO = >

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI)

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two context are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI)

<Cond>

CI
Cfalse

Ctrue

15/30

Representation of a Program
• Entry: denotes the entry point of a program. CO = >

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI)

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two context are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI)

<Cond>

CI
Cfalse

Ctrue

15/30

Representation of a Program

• Junction: denotes join J of several branches of code execution (e.g., after ...then

... and ...else ... branches of an if statement or for a loop join).
CO = τ(J,C1 ◦ · · · ◦ Cn)

. . .C1 Cn

CO

It often holds for junctions that

• τ(J) = λx . x — for simple junctions (if branches),

• τ(J) = λx . CpOx — for loop junctions,

• τ(J) = λx . Cp M x — for loop junctions (only after widening),

where Cp is the abstract context computed for the node in the previous iteration.

• Exit: denotes the exit point of a program.

16/30

Representation of a Program

• Junction: denotes join J of several branches of code execution (e.g., after ...then

... and ...else ... branches of an if statement or for a loop join).
CO = τ(J,C1 ◦ · · · ◦ Cn)

. . .C1 Cn

CO

It often holds for junctions that

• τ(J) = λx . x — for simple junctions (if branches),

• τ(J) = λx . CpOx — for loop junctions,

• τ(J) = λx . Cp M x — for loop junctions (only after widening),

where Cp is the abstract context computed for the node in the previous iteration.

• Exit: denotes the exit point of a program.

16/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]•
• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]•
• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,]

C1
1 = [1, 1]

• C0
2 = [,]

C1
2 = [1, 1] C2

2 = [1,+∞] C3
2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,]

C1
2 = [1, 1] C2

2 = [1,+∞] C3
2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b.

• Assignments are treated using an integer arithmetic
(e.g., [i , j] + [k, l] = [i + k, j + l]).

• Tests are treated using interval arithmetic.

• We define the widening O of intervals as:

• [,] is the null element of O,
• [i , j]O[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2O(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation M over
intervals as

• [,] is the null element of M,
• [i , j] M [k, l] = [

if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2M(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation M over
intervals as

• [,] is the null element of M,
• [i , j] M [k, l] = [

if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2M(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Program Example

• Consider the following flowchart program and interval analysis:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation M over
intervals as

• [,] is the null element of M,
• [i , j] M [k, l] = [

if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2M(C1 ∪ C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

17/30

Examples of Abstract Interpretation

• Interval analysis: represents values of variables by intervals of possible values.

• Polyhedral analysis: represents values of variables by a convex polyhedron (a system of
linear inequalities). This can be used to discover invariants of programs.

• APRON (also intervals, octagons, etc.), . . .

• Heap analysis: overapproximates graphs representing the memory heap. This can be
used, e.g., for memory leak detection.

• CINV, Forester, Predator, Space Invader, . . .

• Worst-case execution time (WCET) analysis: may involve the analysis of the cache
behaviour, the pipelines, etc.

• AbsInt, . . .

• and many more . . .

• Astrée, ECLAIR, Fluctuat, Polyspace, Stanford Checker, . . .

18/30

Polyhedral Analysis

Polyhedral Analysis

• An abstract interpretation-based approach of automatic discovering of relations among
program variables expressible as linear inequations

• this can be seen as a generalization of the interval analysis.

• Let ~x = x1, . . . , xn ∈ Rn be the variables of a program. We can use a convex
polyhedron P ⊆ Rn to represent a set of assignments to ~x .

• We use convex polyhedra because operations on them are reasonably efficient (a set
C ⊆ Rn is convex iff ∀x1, x2 ∈ C , ∀0 ≤ λ ≤ 1 : λx1 + (1− λ)x2 ∈ C).

convex set non-convex set

x1
x2

x1
x2

• Use: compile-time determination of bounds of variables, discovery of constants, . . .

20/30

Representation of a Convex Polyhedron

• We use two dual ways to represent a convex polyhedron:

• by a system of linear inequations, and
• by the frame of the polyhedron.

• We can alter between these representations (with some overhead).

• Efficient execution of different operations require different representation.

21/30

System of Linear Inequations

• Let ~x = x1, . . . , xn ∈ Rn be the variables of a program. Given a finite set of m linear
inequations over ~x of the form{

n∑
i=1

ajixi ≤ bj

∣∣∣∣∣ 1 ≤ j ≤ m

}

or equivalently using vectors and matrices as

~x · A ≤ ~b

we can geometrically interpret the solutions of the inequations as a convex polyhedron
in Rn defined by the intersection of halfspaces corresponding to each inequality.

22/30

The Frame of a Convex Polyhedron

• A convex polyhedron P can also be characterized by its frame F = (V ,R, L):

• vertices V : points ~v of a polyhedron P which are not convex combinations of
other points { ~w1, . . . , ~wm} of P,((

~v =
m∑
i=1

λi ~wi

)
∧ (∀1 ≤ i ≤ m : (~wi ∈ P ∧ λi ≥ 0)) ∧

(
m∑
i=1

λi = 1

))
⇒

⇒ (∀1 ≤ i ≤ m : (λi = 0 ∨ ~wi = ~v))

• Convex hull: the set of all convex combinations of V .

23/30

The Frame of a Convex Polyhedron

• extreme rays R: rays ~r of P (i.e. vectors such that there exists a half-line
parallel to ~r and entirely included in P) which are not positive combinations of
other rays ~s1, . . . , ~sp of P:(

~r =

p∑
i=1

µi ~si ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ ~si = ~r))

• lines L: vectors ~l such that both ~l and −~l are rays of P:

∀~x ∈ P, ∀µ ∈ R : ~x + µ~l ∈ P

• Every point ~x of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

~x =
σ∑
i=1

λi ~vi +

ρ∑
j=1

µj~rj +
δ∑

k=1

νk ~lk

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R

24/30

The Frame of a Convex Polyhedron

• extreme rays R: rays ~r of P (i.e. vectors such that there exists a half-line
parallel to ~r and entirely included in P) which are not positive combinations of
other rays ~s1, . . . , ~sp of P:(

~r =

p∑
i=1

µi ~si ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ ~si = ~r))

• lines L: vectors ~l such that both ~l and −~l are rays of P:

∀~x ∈ P, ∀µ ∈ R : ~x + µ~l ∈ P

• Every point ~x of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

~x =
σ∑
i=1

λi ~vi +

ρ∑
j=1

µj~rj +
δ∑

k=1

νk ~lk

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R

24/30

The Frame of a Convex Polyhedron

• extreme rays R: rays ~r of P (i.e. vectors such that there exists a half-line
parallel to ~r and entirely included in P) which are not positive combinations of
other rays ~s1, . . . , ~sp of P:(

~r =

p∑
i=1

µi ~si ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ ~si = ~r))

• lines L: vectors ~l such that both ~l and −~l are rays of P:

∀~x ∈ P, ∀µ ∈ R : ~x + µ~l ∈ P

• Every point ~x of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

~x =
σ∑
i=1

λi ~vi +

ρ∑
j=1

µj~rj +
δ∑

k=1

νk ~lk

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R

24/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}

R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}

L = ∅

25/30

Example of a Convex Polyhedron

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {~v1 = [4, 1], ~v2 = [2, 2], ~v3 = [2, 4]}
R = {~r1 = (1, 0), ~r2 = (2, 1)}
L = ∅

25/30

Transformations of Convex Polyhedra

• Different types of nodes of the flowchart representation of a program perform distinct
transformation on the polyhedron. The number of input and output polyhedra differs
according to the type of the node.

• Entries: create a polyhedron according to restraints on the input values of variables (in
case there are none for variable xi , the polyhedron is unbounded in i-th dimension).

26/30

Assignments

• Performed operations vary according to assigned expression:

• non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any restraint on xi is dropped (we add

line ~d to frame such that di = 1 and ∀1 ≤ j ≤ n, i 6= j : dj = 0).
• linear expression xi :=

∑n
j=1 ajxj + b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {~v ′1, . . . , ~v ′σ} where ~v ′j is defined by v ′ji = ~a~vj + b and v ′mi = vmi

where ∀1 ≤ m ≤ σ,m 6= j .

• R′ = {~r ′1, . . . , ~r ′ρ} where ~r ′j is defined by r ′ji = ~a~rj and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m 6= j .

• L′ = {~l ′1, . . . , ~l ′δ} where ~l ′j is defined by l ′ji = ~a~lj and l ′jm = ljm for

∀1 ≤ m ≤ δ,m 6= j .

27/30

Assignments

• Performed operations vary according to assigned expression:

• non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any restraint on xi is dropped (we add

line ~d to frame such that di = 1 and ∀1 ≤ j ≤ n, i 6= j : dj = 0).
• linear expression xi :=

∑n
j=1 ajxj + b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {~v ′1, . . . , ~v ′σ} where ~v ′j is defined by v ′ji = ~a~vj + b and v ′mi = vmi

where ∀1 ≤ m ≤ σ,m 6= j .

• R′ = {~r ′1, . . . , ~r ′ρ} where ~r ′j is defined by r ′ji = ~a~rj and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m 6= j .

• L′ = {~l ′1, . . . , ~l ′δ} where ~l ′j is defined by l ′ji = ~a~lj and l ′jm = ljm for

∀1 ≤ m ≤ δ,m 6= j .

27/30

Assignments

• Performed operations vary according to assigned expression:

• non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any restraint on xi is dropped (we add

line ~d to frame such that di = 1 and ∀1 ≤ j ≤ n, i 6= j : dj = 0).
• linear expression xi :=

∑n
j=1 ajxj + b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {~v ′1, . . . , ~v ′σ} where ~v ′j is defined by v ′ji = ~a~vj + b and v ′mi = vmi

where ∀1 ≤ m ≤ σ,m 6= j .

• R′ = {~r ′1, . . . , ~r ′ρ} where ~r ′j is defined by r ′ji = ~a~rj and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m 6= j .

• L′ = {~l ′1, . . . , ~l ′δ} where ~l ′j is defined by l ′ji = ~a~lj and l ′jm = ljm for

∀1 ≤ m ≤ δ,m 6= j .

27/30

Assignments

• Performed operations vary according to assigned expression:

• non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any restraint on xi is dropped (we add

line ~d to frame such that di = 1 and ∀1 ≤ j ≤ n, i 6= j : dj = 0).
• linear expression xi :=

∑n
j=1 ajxj + b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {~v ′1, . . . , ~v ′σ} where ~v ′j is defined by v ′ji = ~a~vj + b and v ′mi = vmi

where ∀1 ≤ m ≤ σ,m 6= j .

• R′ = {~r ′1, . . . , ~r ′ρ} where ~r ′j is defined by r ′ji = ~a~rj and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m 6= j .

• L′ = {~l ′1, . . . , ~l ′δ} where ~l ′j is defined by l ′ji = ~a~lj and l ′jm = ljm for

∀1 ≤ m ≤ δ,m 6= j .

27/30

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C it needs to hold that Pt ⊇ P ∩ TC ,Pf ⊇ P \ TC where TC

is the subset of Rn such that each point of TC satisfies C (these are not necessarily
convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases)
• Linear equality tests: Boolean condition C : ~a~x = b defines a hyperplane H. If P

is included in H then Pt = P,Pf = ∅. If P is not included in H then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition ~a~x ≤ b the outputs are
Pt = P ∩ ~a~x ≤ b and Pf = P ∩ ~a~x ≥ b.

28/30

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C it needs to hold that Pt ⊇ P ∩ TC ,Pf ⊇ P \ TC where TC

is the subset of Rn such that each point of TC satisfies C (these are not necessarily
convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases)

• Linear equality tests: Boolean condition C : ~a~x = b defines a hyperplane H. If P
is included in H then Pt = P,Pf = ∅. If P is not included in H then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition ~a~x ≤ b the outputs are
Pt = P ∩ ~a~x ≤ b and Pf = P ∩ ~a~x ≥ b.

28/30

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C it needs to hold that Pt ⊇ P ∩ TC ,Pf ⊇ P \ TC where TC

is the subset of Rn such that each point of TC satisfies C (these are not necessarily
convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases)
• Linear equality tests: Boolean condition C : ~a~x = b defines a hyperplane H. If P

is included in H then Pt = P,Pf = ∅. If P is not included in H then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition ~a~x ≤ b the outputs are
Pt = P ∩ ~a~x ≤ b and Pf = P ∩ ~a~x ≥ b.

28/30

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C it needs to hold that Pt ⊇ P ∩ TC ,Pf ⊇ P \ TC where TC

is the subset of Rn such that each point of TC satisfies C (these are not necessarily
convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases)
• Linear equality tests: Boolean condition C : ~a~x = b defines a hyperplane H. If P

is included in H then Pt = P,Pf = ∅. If P is not included in H then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition ~a~x ≤ b the outputs are
Pt = P ∩ ~a~x ≤ b and Pf = P ∩ ~a~x ≥ b.

28/30

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm we compute the convex hull of
P1 ∪ · · · ∪ Pm

• Loop junctions: for input polyhedra P1, . . . ,Pm let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = POQ is the convex polyhedron consisting of linear
restraints of P satisfied by every element of Q.

29/30

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm we compute the convex hull of
P1 ∪ · · · ∪ Pm

• Loop junctions: for input polyhedra P1, . . . ,Pm let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = POQ is the convex polyhedron consisting of linear
restraints of P satisfied by every element of Q.

29/30

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm we compute the convex hull of
P1 ∪ · · · ∪ Pm

• Loop junctions: for input polyhedra P1, . . . ,Pm let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = POQ is the convex polyhedron consisting of linear
restraints of P satisfied by every element of Q.

29/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1

P1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1

P1
1 = P1

2

P1
1 = P1

2

= P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2

P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4

P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)

P2
2 = P2

3 = P2
5P2

2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)

P2
2 = P2

3 = P2
5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7

P2
4

P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4

P2
4

P2
4

P2
6

P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4

P2
4

P2
6

P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7

P2
4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)

P3
2 = P3

3 = P3
5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)

P3
2 = P3

3 = P3
5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2

P3
4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2Oconvex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2

P3
4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P2
4P2
4

P2
6P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P1
4

P1
6P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

30/30

