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Brno University of Technology, Czech Republic

@Rich Model Toolkit COST Action Meeting, Malta 2013

June 17, 2013

†To appear in Proc. of CAV’13.



Shape Analysis

Precise shape analysis:
▸ a notoriously difficult problem

▸ specialized solutions (lists)
▸ help from the outside (loop invariants, inductive predicates)

Classes of errors:
▸ error line reachability
▸ invalid pointer dereference
▸ occurrence of garbage
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Inspiration

Separation Logic
, local reasoning, well scalable
/ fixed abstraction

Abstract Regular Tree Model Checking (ARTMC)
, uses tree automata (TA), flexible and refinable abstraction
/ monolithic encoding of the heap, not very scalable
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The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA
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Heap Representation

Forest decomposition of a heap

▸ Identify cut-points
nodes referenced:

● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit
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Heap Representation

a heap h ↦ a forest ( 1, 2, . . . , n)

a set of heaps H ↦ {( 1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

( 1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{( 1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£
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Forest Automaton
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Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers
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Abstract Interpretation

Sets of graphs Sets of FAs
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x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions
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Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19



Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n )

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next
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Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n )

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

k = 1

q1 q2 q3

TA

next next α; q∗ q3
next

next TAα
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Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists
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Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs

▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L( DLS ) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭
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Learning of Boxes

The Challenge

How to find “the right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery
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Learning of Boxes

compromise between

▸ reusability
▸ ability to hide cut-points
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Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19



Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points
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Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

x:
next next next

tail tail tail
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Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next B2

tail

B3
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Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1x:
B3
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Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1x:
B3

B1B2B3
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Learning of Boxes: Knots

Knots

1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs
▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]
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Learning of Boxes: Knots

3 complexity

▸ find basic knots with 1,2, . . . cut-points
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Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint
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Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint
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Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19



Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint
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Learning of Boxes: Example

circular-DLL-of
-trees-rootptr

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint
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Experimental Results

implemented in Forester tool

comparison with Predator (state-of-the-art tool for lists)
▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite
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Conclusion

Shape analysis with forest automata:

fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . . ) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.
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▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.
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Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .
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