
Fully Automated Shape Analysis
Based on Forest Automata†

Lukáš Holı́k Ondřej Lengál Adam Rogalewicz
Jiřı́ Šimáček Tomáš Vojnar

Brno University of Technology, Czech Republic

@Rich Model Toolkit COST Action Meeting, Malta 2013

June 17, 2013

†To appear in Proc. of CAV’13.

Shape Analysis

Precise shape analysis:
▸ a notoriously difficult problem

▸ specialized solutions (lists)
▸ help from the outside (loop invariants, inductive predicates)

Classes of errors:
▸ error line reachability
▸ invalid pointer dereference
▸ occurrence of garbage

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 2 / 19

Shape Analysis

Precise shape analysis:
▸ a notoriously difficult problem

▸ specialized solutions (lists)
▸ help from the outside (loop invariants, inductive predicates)

Classes of errors:
▸ error line reachability
▸ invalid pointer dereference
▸ occurrence of garbage

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 2 / 19

Inspiration

Separation Logic
, local reasoning, well scalable
/ fixed abstraction

Abstract Regular Tree Model Checking (ARTMC)
, uses tree automata (TA), flexible and refinable abstraction
/ monolithic encoding of the heap, not very scalable

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 3 / 19

Inspiration

Separation Logic
, local reasoning, well scalable
/ fixed abstraction

Abstract Regular Tree Model Checking (ARTMC)
, uses tree automata (TA), flexible and refinable abstraction
/ monolithic encoding of the heap, not very scalable

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 3 / 19

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 4 / 19

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 4 / 19

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 4 / 19

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 4 / 19

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, local reasoning of SL

by
▸ splitting the heap into tree components

and
▸ representing sets of heaps using TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 4 / 19

Heap Representation

Forest decomposition of a heap

▸ Identify cut-points
nodes referenced:

● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

�

�
�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 5 / 19

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

1

�

�

3 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 5 / 19

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components

▸ References are explicit

1

�

�

3 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 5 / 19

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

1

�

�

3

2̄

2̄ 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 5 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}

▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order

• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order

• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

assume regular convex classes

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

assume regular convex classes

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ partition H according to the ≈ relation:

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff ∀i ∶ i and
′

i contain the same references in the same order
• the same general structure

for every class of H≈:

assume regular convex classes

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

Forest Automaton

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 6 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Symbolic Execution

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

check symbols on transitions
Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 7 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

k = 1

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Widening

abstraction on forest automaton (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

k = 1

q1 q2 q3

TA

next next α; q∗ q3
next

next TAα

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 8 / 19

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff . . .The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff . . .The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

. . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff . . .The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

iff . . .The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; ∞ index of H≈

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 9 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs

▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS

: L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

. . .x:

next next next next next

prev prev prev prev prev

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

. . .x:
DLS DLS DLS DLS DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

1 . . .x:
DLS DLS DLS DLS DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

q1 q2 q3 q4 q5 . . .
DLS DLS DLS DLS DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

q∗ qf
DLS

DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 10 / 19

Learning of Boxes

The Challenge

How to find “the right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 11 / 19

Learning of Boxes

The Challenge

How to find “the right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 11 / 19

Learning of Boxes

compromise between

▸ reusability
▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability

▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

x:
next next next

tail tail tail

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next next next

tail tail tail

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next next next

tail tail tail

B1

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next next B1

tail tail

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next next B1

tail tail

B2

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next B2

tail

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1 2x:
next B2

tail

B3

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1x:
B3

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes

compromise between
▸ reusability
▸ ability to hide cut-points

1x:
B3

B1B2B3

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 12 / 19

Learning of Boxes: Knots

Knots

1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs
▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 13 / 19

Learning of Boxes: Knots

Knots
1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs
▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 13 / 19

Learning of Boxes: Knots

Knots
1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs

▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 13 / 19

Learning of Boxes: Knots

Knots
1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs
▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 13 / 19

Learning of Boxes: Knots

Knots
1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs
▸ join intersecting knots

▸ enclose paths from inner nodes to leaves

[TODO: rewrite this slide (explain on the example)]Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 13 / 19

Learning of Boxes: Knots

3 complexity

▸ find basic knots with 1,2, . . . cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 14 / 19

Learning of Boxes: Knots

3 complexity

▸ find basic knots with 1,2, . . . cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 14 / 19

Learning of Boxes: Knots

3 complexity

▸ find basic knots with 1,2, . . . cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 14 / 19

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 15 / 19

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 15 / 19

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 15 / 19

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
DLS

D
LS

DLS

D
LS

DLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Learning of Boxes: Example

circular-DLL-of
-trees-rootptr

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 16 / 19

Experimental Results

implemented in Forester tool

comparison with Predator (state-of-the-art tool for lists)
▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 17 / 19

Experimental Results

implemented in Forester tool
comparison with Predator (state-of-the-art tool for lists)

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 17 / 19

Experimental Results

implemented in Forester tool
comparison with Predator (state-of-the-art tool for lists)

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 17 / 19

Conclusion

Shape analysis with forest automata:

fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Conclusion

Shape analysis with forest automata:
fully automated

very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework

Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool

successfully verified:
▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 18 / 19

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 19 / 19

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 19 / 19

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata June 17, 2013 19 / 19

	Heap Representation
	Learning of Boxes

