Fully Automated Shape Analysis Based on Forest Automata[†]

Lukáš Holík **Ondřej Lengál** Adam Rogalewicz Jiří Šimáček Tomáš Vojnar

Brno University of Technology, Czech Republic

@Rich Model Toolkit COST Action Meeting, Malta 2013

June 17, 2013

[†]To appear in *Proc. of CAV'13*.

Shape Analysis

- Precise shape analysis:
 - a notoriously difficult problem

- specialized solutions (lists)
- help from the outside (loop invariants, inductive predicates)

Shape Analysis

Precise shape analysis:

a notoriously difficult problem

- specialized solutions (lists)
- help from the outside (loop invariants, inductive predicates)

Classes of errors:

- error line reachability
- invalid pointer dereference
- occurrence of garbage

Inspiration

- Separation Logic
 - local reasoning, well scalable
 - fixed abstraction

Inspiration

- Separation Logic
 - local reasoning, well scalable
 - g fixed abstraction
- Abstract Regular Tree Model Checking (ARTMC)
 - uses tree automata (TA), flexible and refinable abstraction
 - monolithic encoding of the heap, not very scalable

Introduced at CAV'11.

- Introduced at CAV'11.
- Combines
 - g flexibility of ARTMC

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMCwith
 - local reasoning of SL

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMCwith
 - local reasoning of SL

by

splitting the heap into tree components

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMCwith
 - local reasoning of SL

by

- splitting the heap into tree components and
 - representing sets of heaps using TA

■ Forest decomposition of a heap

- Forest decomposition of a heap

- nodes referenced:

 by variables, or
 multiple times Identify cut-points

- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times
- Identify cut-points
 Split the heap into tree components

- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times

- Split the heap into tree components
- References are explicit

Identify cut-points «

■ a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_m), \dots\}$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\bigstar_1, \bigstar_2, \ldots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \ldots, \bigstar'_n)$$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\bigstar_1, \bigstar_2, \dots, \bigstar_{\stackrel{\bullet}{\textbf{n}}}) \approx (\bigstar_1', \bigstar_2', \dots, \bigstar_{\stackrel{\bullet}{\textbf{n}}}')$$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \spadesuit_2, \dots, \spadesuit_{\stackrel{\scriptstyle n}{n}}) \approx (\clubsuit'_1, \spadesuit'_2, \dots, \spadesuit'_{\stackrel{\scriptstyle n}{n}})$$

iff $\forall i : \bigstar_i$ and \bigstar_i' contain the same references in the same order

· the same general structure

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \spadesuit_2, \dots, \spadesuit_{\stackrel{\scriptstyle \bullet}{\textbf{n}}}) \approx (\clubsuit'_1, \spadesuit'_2, \dots, \spadesuit'_{\stackrel{\scriptstyle \bullet}{\textbf{n}}})$$

- · the same general structure
- for every class of \mathcal{H}_{\approx} :

$$\{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - ▶ partition H according to the ≈ relation:

$$(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar_1', \bigstar_2', \dots, \bigstar_n')$$

iff $\forall i : \hat{\pi}_i$ and $\hat{\pi}'_i$ contain the same references in the same order

- · the same general structure
- for every class of \mathcal{H}_{\approx} :

$$\{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n), \dots\}$$

$$\downarrow$$

$$(\{\bigstar_1, \bigstar'_1, \dots\}, \{\bigstar_2, \bigstar'_2, \dots\}, \dots, \{\bigstar_n, \bigstar'_n, \dots\})$$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \clubsuit_2, \dots, \spadesuit_{\stackrel{\bullet}{\textbf{n}}}) \approx (\clubsuit'_1, \clubsuit'_2, \dots, \spadesuit'_{\stackrel{\bullet}{\textbf{n}}})$$

- the same general structure
- for every class of \mathcal{H}_{\approx} :

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \clubsuit_2, \dots, \spadesuit_{\stackrel{\scriptstyle \times}{\textbf{n}}}) \approx (\clubsuit_1', \clubsuit_2', \dots, \spadesuit_{\stackrel{\scriptstyle \times}{\textbf{n}}}')$$

- · the same general structure
- for every class of \mathcal{H}_{\approx} :

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \clubsuit_2, \dots, \spadesuit_{\color{red} n}) \approx (\clubsuit_1', \clubsuit_2', \dots, \spadesuit_{\color{red} n}')$$

- the same general structure
- for every class of \mathcal{H}_{\approx} :

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - partition \mathcal{H} according to the \approx relation:

$$(\clubsuit_1, \clubsuit_2, \dots, \spadesuit_{\color{red} n}) \approx (\clubsuit_1', \clubsuit_2', \dots, \clubsuit_{\color{red} n}')$$

- the same general structure
- for every class of H_≈:

Abstract Interpretation

Abstract Interpretation

Statements

- \blacksquare x := new T()
- delete(x)
- \blacksquare x := null
- x := y
- x := y.next
- x.next := y
- if/while (x == y)

Abstract Interpretation

Statements

Abstract Transformers

- x := new T()
- delete(x)
- x := null
- x := y
- x := y.next
- x.next := y
- if/while (x == y)

Abstract Interpretation

Statements Abstract Transformers x := new T() delete(x) x := null x := y x := y.next x.next := y if/while (x == y)

Abstract Interpretation

Statements Abstract Transformers x := new T() append a TA delete(x) x := null x := y x := y.next x.next := y if/while (x == y)

Abstract Interpretation

Abstract Interpretation

abstraction on forest automaton (TA_1, \ldots, TA_n)

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ

Widening

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ

k = 1

Widening

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

k = 1

The so-far-presented:

(SLLs), trees

$$(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar_1', \bigstar_2', \dots, \bigstar_n')$$
iff ...

- works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points → ∞ index of H_∞[†]

- $(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$ iff ...
- works well for singly linked lists (SLLs), trees
- g fails for more complex data structures
 - unbounded number of cut-points → ∞ index of H_∞[†]

- $(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$ iff ...
- works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points → ∞ index of H_∞[†]

- $(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$ iff ...
- works well for singly linked lists (SLLs), trees
- g fails for more complex data structures
 - unbounded number of cut-points → ∞ index of H_∞[†]

- · doubly linked lists (DLLs), circular lists, nested lists,
- trees with parent pointers,
- skip lists

- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box
$$DLS$$
: $\mathcal{L}(DLS) = \begin{cases} next \\ prev \end{cases}$

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} next \\ prev \end{cases}$

- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} next \\ prev \end{cases}$

- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} next \\ prev \end{cases}$

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

The Challenge

How to find "the right" boxes?

The Challenge

How to find "the right" boxes?

- CAV'11 database of boxes
- CAV'13 automatic discovery

compromise between

- compromise between
 - reusability

- compromise between
 - reusability

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

- compromise between
 - reusability
 - ability to hide cut-points

Learning of Boxes

- compromise between
 - reusability
 - ability to hide cut-points

Knots

Knots

1 smallest subgraphs meaningful to be folded:

Knots

1 smallest subgraphs meaningful to be folded:

2 handle inputs/outputs

Knots

1 smallest subgraphs meaningful to be folded:

- 2 handle inputs/outputs
 - join intersecting knots

Knots

1 smallest subgraphs meaningful to be folded:

- 2 handle inputs/outputs
 - join intersecting knots

enclose paths from inner nodes to leaves

3 complexity

3 complexity

3 complexity

▶ find basic knots with 1,2,... cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

 \Rightarrow hide unboundedly many cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

 \Rightarrow hide unboundedly many cut-points

- 1 Algorithm: Abstraction Loop
- 2 Unfold solo boxes
- 3 repeat
- 4 Abstract

not on a cycle

- 5 Fold
- 6 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

- 1 Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- 1 Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- з Abstract
- Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
 - Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- з Abstract
- Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

circular-DLL-of -trees-rootptr

- Unfold solo boxes
- 2 repeat
 - 3 Abstract
 - Fold
- 5 until fixpoint

Experimental Results

■ implemented in Forester tool

Experimental Results

- implemented in Forester tool
- comparison with Predator (state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Experimental Results

- implemented in Forester tool
- comparison with Predator (state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Table: Results of the experiments [s]

Example	FA	Predator	Example	FA	Predator
SLL (delete)	0.04	0.04	DLL (reverse)	0.06	0.03
SLL (bubblesort)	0.04	0.03	DLL (insert)	0.07	0.05
SLL (mergesort)	0.15	0.10	DLL (insertsort ₁)	0.40	0.11
SLL (insertsort)	0.05	0.04	DLL (insertsort ₂)	0.12	0.05
SLL (reverse)	0.03	0.03	DLL of CDLLs	1.25	0.22
SLL+head	0.05	0.03	DLL+subdata	0.09	Т
SLL of 0/1 SLLs	0.03	0.11	CDLL	0.03	0.03
SLL _{Linux}	0.03	0.03	tree	0.14	Err
SLL of CSLLs	0.73	0.12	tree+parents	0.21	Т
SLL of 2CDLLs _{Linux}	0.17	0.25	tree+stack	0.08	Err
skip list ₂	0.42	Т	tree (DSW) Deutsch- Schorr-Waite	0.40	Err
skip list ₃	9.14	T	tree of CSLLs	0.42	Err

Shape Analysis with Forest Automata

timeout

false positive

Shape analysis with forest automata:

fully automated

- fully automated
- very flexible framework

- fully automated
- very flexible framework
- Forester tool

- fully automated
- very flexible framework
- Forester tool
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - ▶ trees
 - skip lists

- fully automated
- very flexible framework
- Forester tool
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - ▶ trees
 - skip lists
- not covered here:
 - support for pointer arithmetic
 - tracking ordering relations
 - P. Abdulla, L. Holík, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
 Verification of Heap Manipulating Programs with Ordered Data by Extended Forest Automata. To appear in *Proc. of ATVA'13*.

Future work

- **CEGAR** loop
 - ▶ red-black trees, . . .

Future work

- CEGAR loop
 - red-black trees, . . .
- concurrent data structures
 - lockless skip lists, . . .

Future work

- CEGAR loop
 - red-black trees, . . .
- concurrent data structures
 - ▶ lockless skip lists, ...
- recursive boxes
 - ▶ B+ trees, . . .