Reducing (to) the Ranks:

Efficient Rank-based Büchi Automata Complementation

Vojtěch Havlena Ondřej Lengál

Brno University of Technology, Czech Republic

26 August 2021 (CONCUR'21)

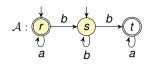
Automata over infinite words

2/19

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, F)$ over Σ
 - Q finite set of states
 - ▶ δ transition function; $\delta: Q \times \Sigma \rightarrow 2^Q$
 - ▶ $I \subset Q$ initial states
 - F ⊆ Q accepting states

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, F)$ over Σ
 - Q finite set of states
 - ▶ δ transition function; δ : $Q \times \Sigma \rightarrow 2^Q$
 - $ightharpoonup I \subset Q$ initial states
 - ► $F \subseteq Q$ accepting states
- Accepts via looping over accepting states
- Defines the class of ω -regular languages

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, F)$ over Σ
 - Q finite set of states
 - ▶ δ transition function; δ : $Q \times \Sigma \rightarrow 2^Q$
 - $ightharpoonup I \subset Q$ initial states
 - $ightharpoonup F \subseteq Q$ accepting states
- Accepts via looping over accepting states
- Defines the class of ω -regular languages



$$\triangleright$$
 $\mathcal{L}(\mathcal{A}) = \mathbf{a}^{\omega} + (\epsilon + \mathbf{a}^* \mathbf{b}) \mathbf{b}^+ \mathbf{a}^{\omega}$

Motivation for Complementation

- Model checking of linear-time properties
 - ightharpoonup property $\varphi \rightsquigarrow \mathcal{A}_{\varphi}$
 - ightharpoonup system $S \rightsquigarrow A_S$
 - $\qquad \qquad \text{checking } S \vDash \varphi \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_S) \subseteq \mathcal{L}(\mathcal{A}_\varphi) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_S) \cap \mathcal{L}(\mathcal{A}_\varphi^\complement) = \emptyset$

Motivation for Complementation

- Model checking of linear-time properties
 - ightharpoonup property $\varphi \rightsquigarrow \mathcal{A}_{\varphi}$
 - \triangleright system $S \rightsquigarrow A_S$
 - $\qquad \qquad \text{checking } S \vDash \varphi \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_S) \subseteq \mathcal{L}(\mathcal{A}_\varphi) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_S) \cap \mathcal{L}(\mathcal{A}_\varphi^\complement) = \emptyset$
- Termination analysis: Ultimate Automizer

[HeizmannHP]

- removing traces with proved termination
- difference automaton

Motivation for Complementation

- Model checking of linear-time properties
 - ightharpoonup property $\varphi \rightsquigarrow \mathcal{A}_{\varphi}$
 - \triangleright system $S \rightsquigarrow A_S$
 - $\qquad \qquad \text{checking } S \vDash \varphi \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$
- Termination analysis: Ultimate Automizer

[HeizmannHP]

- removing traces with proved termination
- difference automaton
- Decision procedures:
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - ► ETL: extended temporal logic
 - QPTL: quantified propositional temporal logic
 - ► FO over Sturmian words

Büchi Automata Complementation

- More involved than for NFAs (cannot be determinized)
- Lower bound $(0.76n)^n$

[Yan'06]

4/19

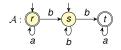
Büchi Automata Complementation

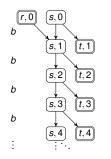
- More involved than for NFAs (cannot be determinized)
- Lower bound $(0.76n)^n$

[Yan'06]

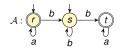
- Ramsey-based [Sistla, Vardi, Volper'87][BreuersLO'12]
- Determinization-based [Safra'88][Piterman'06]
 - Rank-based [KupfermanV'01][FriedgutKV'06][Schewe'09]
 - Slice-based [Vardi, Wilke'08] [Kähler, Wilke'08]
 - Learning-based [Li,Turrini,Zhang,Schewe'18]
- Subset-tuple construction [Allred,Utes-Nitche'18]
 - Semideterminization-based [BlahoudekDS'20]

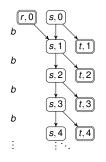
- **Run DAG** \mathcal{G}_{α} of a word α
 - ightharpoonup all runs on α in \mathcal{A}
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$



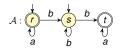


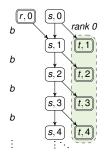
- Run DAG \mathcal{G}_{α} of a word α
 - ightharpoonup all runs on α in \mathcal{A}
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$
- Ranking procedure (set i := 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_{α}
 - 2 assign rank i + 1 to vertices that cannot reach F and remove them from \mathcal{G}_{α}
 - i := i + 2; repeat while $i \le 2|Q|$



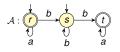


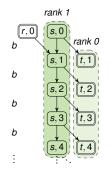
- lacksquare Run DAG \mathcal{G}_{lpha} of a word lpha
 - ightharpoonup all runs on α in \mathcal{A}
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$
- Ranking procedure (set i := 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_{α}
 - 2 assign rank i + 1 to vertices that cannot reach F and remove them from \mathcal{G}_{α}
 - i := i + 2; repeat while $i \le 2|Q|$





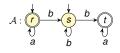
- **Run DAG** \mathcal{G}_{α} of a word α
 - ightharpoonup all runs on α in \mathcal{A}
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$
- Ranking procedure (set i := 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_{α}
 - 2 assign rank i + 1 to vertices that cannot reach F and remove them from \mathcal{G}_{α}
 - i := i + 2; repeat while $i \le 2|Q|$

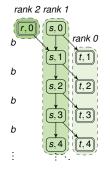




$$b^{\omega} \notin \mathcal{L}(\mathcal{A})$$

- **Run DAG** \mathcal{G}_{α} of a word α
 - ightharpoonup all runs on α in A
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$
- Ranking procedure (set i := 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_{α}
 - 2 assign rank i + 1 to vertices that cannot reach F and remove them from \mathcal{G}_{α}
 - i := i + 2; repeat while $i \le 2|Q|$



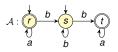


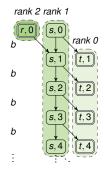
- lacksquare Run DAG \mathcal{G}_{lpha} of a word lpha
 - ightharpoonup all runs on α in \mathcal{A}
 - ▶ vertices: (s, ℓ) ; $s \in Q, \ell \in \mathbb{N}$
- Ranking procedure (set i := 0)
 - assign rank i to vertices with finitely many successors and remove them from \mathcal{G}_{α}
 - 2 assign rank i + 1 to vertices that cannot reach F and remove them from \mathcal{G}_{α}
 - 3 i := i + 2; repeat while $i \le 2|Q|$

Lemma

[Kupferman, Vardi'01]

If $\alpha \notin \mathcal{L}(\mathcal{A})$ then $\forall v \in \mathcal{G}_{\alpha}$: $rank(v) \leq 2|Q|$.





Nondeterministically guesses run DAG ranks

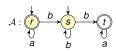
[Schewe'09]

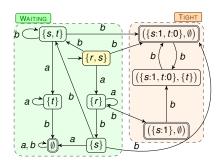
- Nondeterministically guesses run DAG ranks
- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - to accept a word → decrease ranks of the runs from O
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks {1,3,...,r}

- Nondeterministically guesses run DAG ranks
- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - to accept a word → decrease ranks of the runs from O
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks $\{1,3,\ldots,r\}$
- Transition function (S, O, f) $\stackrel{a}{\rightarrow}$ (S', O', f')
 - ▶ S'-part: subset construction; $S' = \delta(S, a)$
 - ▶ O'-part: keeps successors of O with even ranks (or a new sample if $O = \emptyset$)
 - f': nonincreasing tight ranking wrt δ (with even accepting states)

- Nondeterministically guesses run DAG ranks
- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks {1,3,...,r}
- Transition function (S, O, f) $\stackrel{a}{\rightarrow}$ (S', O', f')
 - ► S'-part: subset construction; $S' = \delta(S, a)$
 - ightharpoonup O'-part: keeps successors of O with even ranks (or a new sample if $O = \emptyset$)
 - f': nonincreasing tight ranking wrt δ (with even accepting states)
- Waiting and Tight part
 - in Walting guess the point from which all successor rankings are tight (only S-part)
 - ► in TIGHT track tight rankings

Rank-based Complementation Example

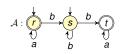




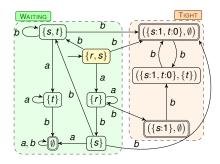
CONCUR'21

7/19

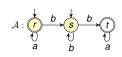
Rank-based Complementation Example



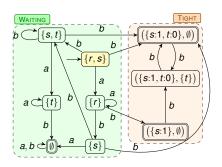
- - $S' = \delta(\{s, t\}, b) = \{s, t\}$
 - $f'(s) \le f(s), f'(t) \le f(s),$ $f'(t) \text{ is even} \Longrightarrow \{s:1, t:0\}$
 - $O' = \{t\} \qquad (O' = S' \cap even(f'))$
 - $ightharpoonup (\{s:1,t:0\},\{t\})$



Rank-based Complementation Example



- - $S' = \delta(\{s, t\}, b) = \{s, t\}$
 - $f'(s) \le f(s), f'(t) \le f(s),$ $f'(t) \text{ is even} \Longrightarrow \{s:1, t:0\}$
 - $O' = \{t\} \qquad (O' = S' \cap even(f'))$
 - ► ({s:1, t:0}, {t})
- - \triangleright S', f' similar to the previous case
 - \triangleright $O' = \emptyset$ $(O' = \delta(\{t\}, b) \cap even(t'))$



- Highly nondeterministic
 - when to switch from Waiting to TIGHT?
 - ▶ how to decrease ranks in TIGHT?
 - many different (redundant) successors!

- Highly nondeterministic
 - when to switch from Waiting to Tight?
 - ▶ how to decrease ranks in TIGHT?
 - many different (redundant) successors!
- Tight rank bound b = 2|Q| 1 is often too coarse
 - ▶ unnecessarily high bound → many redundant states are generated

CONCUR'21

8/19

state space explosion → combinatorial explosion wrt. b

- Highly nondeterministic
 - when to switch from Waiting to Tight?
 - ▶ how to decrease ranks in TIGHT?
 - many different (redundant) successors!
- Tight rank bound b = 2|Q| 1 is often too coarse
 - ▶ unnecessarily high bound → many redundant states are generated

CONCUR'21

8/19

Reduce nondeterminism and keep the ranks as small as possible!

- Highly nondeterministic
 - when to switch from Waiting to TIGHT?
 - ► how to decrease ranks in TIGHT?
 - many different (redundant) successors!
- Tight rank bound b = 2|Q| 1 is often too coarse
 - ▶ unnecessarily high bound → many redundant states are generated
 - state space explosion → combinatorial explosion wrt. b

Reduce nondeterminism and keep the ranks as small as possible!

- Lightweight optimizations
- Based on the notion of super-tight runs
 - ▶ a run on $\alpha \in \mathcal{L}(\mathcal{A}^{\complement})$ using as small ranks as possible
 - enough to preserve only super-tight runs

More super-tight runs that differ on the position of the transition from Walting into Tight:

- More super-tight runs that differ on the position of the transition from Walting into Tight:
- Postpone transitions to the tight part
 - generate transitions only when a cycle is closed in WAITING
 - similar to the C3 (cycle) condition in partial-order reduction (POR).
 - ► reduces the number of transitions to TIGHT

■ More super-tight runs that differ on the position of the transition from Walting into Tight:

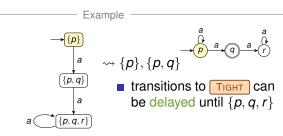
- $S_0 \xrightarrow{a} \cdots \xrightarrow{a} S_k \xrightarrow{a} (S_{k+1}, \cdot, f_{k+1}) \xrightarrow{a} \cdots$
- Postpone transitions to the tight part
 - generate transitions only when a cycle is closed in Waiting
 - similar to the C3 (cycle) condition in partial-order reduction (POR).
 - ► reduces the number of transitions to TIGHT

Example

More super-tight runs that differ on the position of the transition from WAITING into TIGHT:

$$\begin{array}{c|c} & S_0 & \xrightarrow{a} & \cdots & \xrightarrow{a} & S_k & \xrightarrow{a} & (S_{k+1}, \cdot, f_{k+1}) & \xrightarrow{a} & \cdots \\ \hline & S_0 & \xrightarrow{a} & \cdots & \xrightarrow{a} & S_k & \xrightarrow{a} & \cdots & \xrightarrow{a} & S_\ell & \xrightarrow{a} & (S_{\ell+1}, \cdot, f_{\ell+1}) & \xrightarrow{a} & \cdots \\ \hline \end{array}$$

- Postpone transitions to the tight part
 - generate transitions only when a cycle is closed in Waiting
 - similar to the C3 (cycle) condition in partial-order reduction (POR).
 - ► reduces the number of transitions to TIGHT

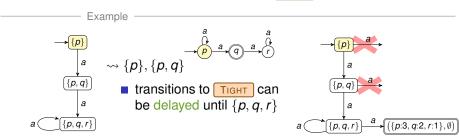


More super-tight runs that differ on the position of the transition from WAITING into TIGHT:

$$S_0 \xrightarrow{a} \cdots \xrightarrow{a} S_k \xrightarrow{a} (S_{k+1}, \cdot, f_{k+1}) \xrightarrow{a} \cdots$$

$$S_0 \xrightarrow{a} \cdots \xrightarrow{a} S_k \xrightarrow{a} \cdots \xrightarrow{a} S_\ell \xrightarrow{a} (S_{\ell+1}, \cdot, f_{\ell+1}) \xrightarrow{a} \cdots$$

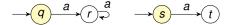
- Postpone transitions to the tight part
 - generate transitions only when a cycle is closed in Waiting
 - similar to the C3 (cycle) condition in partial-order reduction (POR).
 - reduces the number of transitions to TIGHT



- Reasoning about Waiting
 - ► WAITING defines the skeleton (S-part) of TIGHT
 - sizes of reachable macrostates restrict the maximum rank
 - **▶** bounded by the size of a max ∞-often reachable macrostate [·]
 - $(S, O, f) \rightsquigarrow rank(f) \leq 2\lceil S \rceil 1$

- Reasoning about Waiting
 - ► WAITING defines the skeleton (S-part) of TIGHT
 - sizes of reachable macrostates restrict the maximum rank
 - bounded by the size of a max ∞-often reachable macrostate [·]
 - $(S, O, f) \rightsquigarrow rank(f) \leq 2\lceil S \rceil 1$

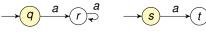
Example

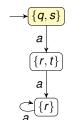


- Reasoning about Waiting
 - ► WAITING defines the skeleton (S-part) of TIGHT
 - sizes of reachable macrostates restrict the maximum rank
 - **▶** bounded by the size of a max ∞-often reachable macrostate [·]
 - $(S, O, f) \rightsquigarrow rank(f) \leq 2\lceil S \rceil 1$

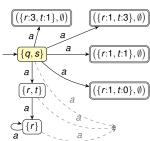
Example

 $\rightsquigarrow \{r, t\}$





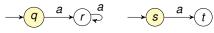
- maximal ∞-reach macrostate: {r}
- remove $(\{r, t\}, \cdot, f)$ s.t. $rank(f) > 2|\{r\}| 1 = 1$

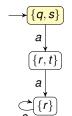


- Reasoning about Waiting
 - ► WAITING defines the skeleton (S-part) of TIGHT
 - sizes of reachable macrostates restrict the maximum rank
 - bounded by the size of a max ∞-often reachable macrostate [·]
 - $(S, O, f) \rightsquigarrow rank(f) \leq 2\lceil S \rceil 1$

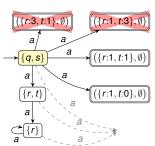
Example

 $\rightsquigarrow \{r, t\}$





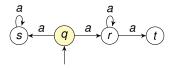
- maximal ∞-reach macrostate: {r}
- remove $(\{r, t\}, \cdot, f)$ s.t. $rank(f) > 2|\{r\}| 1 = 1$



- lacktriangle Refine with a minimal ∞ -often reachable macrostate $\lfloor \cdot
 floor$
 - ► (S, O, f)
 - ▶ $q \in S \rightsquigarrow$ at most $\lceil S \rceil \lfloor q \rfloor$ states with higher rank than f(q)
 - ▶ reduces the value of rank(f); $rank(f) \le f(q) + 2(\lceil S \rceil \lfloor q \rfloor)$

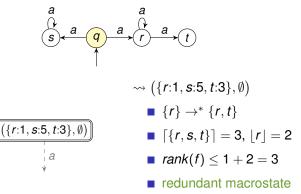
- lacktriangle Refine with a minimal ∞ -often reachable macrostate $\lfloor \cdot \rfloor$
 - ► (S, O, f)
 - ▶ $q \in S \rightsquigarrow$ at most $\lceil S \rceil \lfloor q \rfloor$ states with higher rank than f(q)
 - reduces the value of rank(f); $rank(f) \le f(q) + 2(\lceil S \rceil \lfloor q \rfloor)$

Example



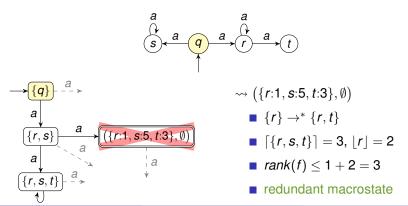
- lacktriangle Refine with a minimal ∞ -often reachable macrostate $\lfloor \cdot
 floor$
 - ► (S, O, f)
 - ▶ $q \in S \rightsquigarrow$ at most $\lceil S \rceil \lfloor q \rfloor$ states with higher rank than f(q)
 - reduces the value of rank(f); $rank(f) \le f(q) + 2(\lceil S \rceil \lfloor q \rfloor)$

Example



 $\{r, s, t\}$

- lacktriangle Refine with a minimal ∞ -often reachable macrostate $\lfloor \cdot
 floor$
 - ► (S, O, f)
 - ▶ $q \in S \rightsquigarrow$ at most $\lceil S \rceil \lfloor q \rfloor$ states with higher rank than f(q)
 - ▶ reduces the value of rank(f); $rank(f) \le f(q) + 2(\lceil S \rceil \lfloor q \rfloor)$



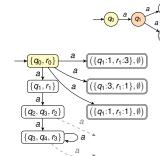
Havlena, Lengál

- Relation between state-ranks inside each macrostate
- For each macrostate (S, O, f) in every super-tight run:
 - ▶ $p \leq_{ors} r \land f(p) \text{ odd } \land f(r) \text{ odd } \implies f(p) \leq f(r)$
 - ors: odd rank simulation

- Relation between state-ranks inside each macrostate
- For each macrostate (S, O, f) in every super-tight run:
 - ▶ $p \leq_{ors} r \land f(p) \text{ odd } \land f(r) \text{ odd } \implies f(p) \leq f(r)$
 - ors: odd rank simulation

Example

- Relation between state-ranks inside each macrostate
- For each macrostate (S, O, f) in every super-tight run:
 - ▶ $p \leq_{ors} r \land f(p) \text{ odd } \land f(r) \text{ odd } \implies f(p) \leq f(r)$
 - ors: odd rank simulation

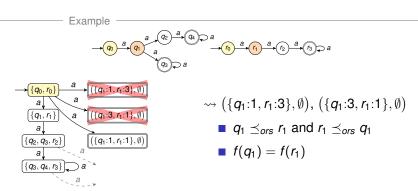


Example

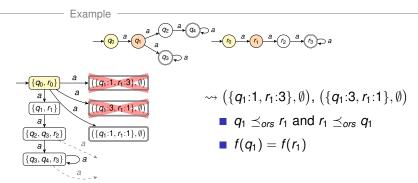
$$\rightsquigarrow (\{q_1:1, r_1:3\}, \emptyset), (\{q_1:3, r_1:1\}, \emptyset)$$

- \blacksquare $q_1 \leq_{ors} r_1$ and $r_1 \leq_{ors} q_1$
- $f(q_1) = f(r_1)$

- Relation between state-ranks inside each macrostate
- For each macrostate (S, O, f) in every super-tight run:
 - ▶ $p \leq_{ors} r \land f(p) \text{ odd } \land f(r) \text{ odd } \implies f(p) \leq f(r)$
 - ors: odd rank simulation



- Relation between state-ranks inside each macrostate
- For each macrostate (S, O, f) in every super-tight run:
 - ▶ $p \leq_{ors} r \land f(p) \text{ odd } \land f(r) \text{ odd } \implies f(p) \leq f(r)$
 - ors: odd rank simulation



- ▶ underapproximation \leq_R of $\leq_{ors} \leadsto$ Ifp computation from \leq_{di}
 - step: $\forall a \in \Sigma : (\delta(p, a) \setminus F) \leq_R (\delta(q, a) \setminus F)$ then $p \leq_R q$

MAXRANK Optimization

- (inspired by RedAvgOut from [Schewe'09])
- Represents several runs (incl. super-tight) using a maximal run

Runs

Maximal run

$$\boxed{S_0} \xrightarrow{a} \cdots \xrightarrow{a} \boxed{S_k} \xrightarrow{a} \boxed{(\{p:1,q:3,r:3,s:2\},\cdot)} \xrightarrow{a} \cdots$$

MAXRANK Optimization

- (inspired by RedAvgOut from [Schewe'09])
- Represents several runs (incl. super-tight) using a maximal run

Runs

$$\begin{array}{c|c} S_0 & \stackrel{a}{\rightarrow} & \cdots & \stackrel{a}{\rightarrow} & S_k & \stackrel{a}{\rightarrow} & (\{p:1,q:3,r:3,s:0\},\cdot) & \stackrel{a}{\rightarrow} & \cdots \\ \hline S_0 & \stackrel{a}{\rightarrow} & \cdots & \stackrel{a}{\rightarrow} & S_k & \stackrel{a}{\rightarrow} & (\{p:1,q:3,r:1,s:0\},\cdot) & \stackrel{a}{\rightarrow} & \cdots \\ \hline S_0 & \stackrel{a}{\rightarrow} & \cdots & \stackrel{a}{\rightarrow} & S_k & \stackrel{a}{\rightarrow} & (\{p:1,q:3,r:2,s:1\},\cdot) & \stackrel{a}{\rightarrow} & \cdots \\ \hline \end{array}$$

Maximal run

- Reduces the number of nondeterministic choices
 - decrease ranks of all possible states in the O-set, or
 - continue to the maximal macrostate
- Removing macrostates using the previous optimizations

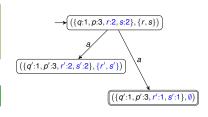
MAXRANK Optimization

- (inspired by RedAvgOut from [Schewe'09])
- Represents several runs (incl. super-tight) using a maximal run

Runs

Maximal run

$$\begin{bmatrix}
S_0
\end{bmatrix} \xrightarrow{a} \cdots \xrightarrow{a} \begin{bmatrix}
S_k
\end{bmatrix} \xrightarrow{a} \left(\{p:1, q:3, r:3, s:2\}, \cdot \right) \xrightarrow{a} \cdots$$



- Reduces the number of nondeterministic choices
 - decrease ranks of all possible states in the O-set, or
 - continue to the maximal macrostate
- Removing macrostates using the previous optimizations

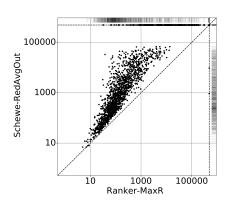
Experimental Evaluation

- Random automata $\Sigma = \{a, b\}$ from [Tsai,Fogarty,Vardi,Tsay'11]
 - starting with 15 states
 - ► reduced using Spot, Rabit
 - removed semi-deterministic, inherently weak, unambigous, empty language
 - 2393 hard automata
 - Timeout: 5 min

Experimental Evaluation

- Random automata $\Sigma = \{a, b\}$ from [Tsai,Fogarty,Vardi,Tsay'11]
 - starting with 15 states
 - reduced using SPOT, RABIT
 - removed semi-deterministic, inherently weak, unambigous, empty language
 - ► 2393 hard automata
 - Timeout: 5 min
- Implemented in C++ within RANKER
 - ► RANKER+PIT: combination of RANKER and PITERMAN → particular algorithm chosen according to Walting and rank estimation
 - compared with:
 - GOAL (SCHEWEREDAVGOUT, SAFRA, PITERMAN, FRIBOURG)
 - SPOT,
 - LTL2DSTAR,
 - SEMINATOR 2,
 - ROLL

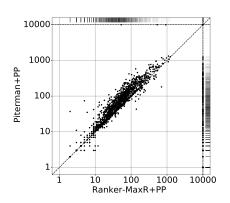
Experimental Evaluation-States rank-based



- SCHEWE_{REDAVGOUT}
- no postprocessing
- significant part of the state space pruned

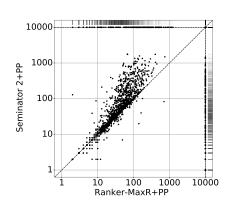
15/19

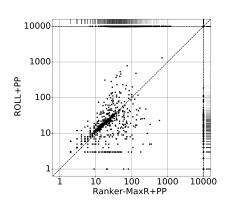
Experimental Evaluation-States not rank-based 1



- PITERMAN (from GOAL ③)
 - on average better than SAFRA, SPOT, LTL2DSTAR
- determinization-based
- postprocessed by autfilt

Experimental Evaluation-States not rank-based 2





- SEMINATOR 2
- semideterminization-based
- postprocessed

- ROLL
- learning-based
- postprocessed

Experimental Evaluation-States Cont.

method	max	mean	med.	std. dev	то	wins	(TO)	losses	(TO)
RANKER	319119	8 051.58	185	28 891.4	360	<u> </u>	_	_	_
SCHEWE _{REDAVGOUT}	67 780	5 227.3	723	10 493.8	844	2030	(486)	3	(2)
RANKER	1 239	61.83	32	103.18	360	_	_	_	_
RANKER+PIT	1 706	73.65	33	126.8	17	_	_	_	_
PITERMAN 😌	1 322	88.30	40	142.19	12	1 069	(3)	469	(351)
Safra 🥸	1 648	99.22	42	170.18	158	1 171	(117)	440	(319)
SPOT	2028	91.95	38	158.13	13	907	(6)	585	(353)
Fribourg 🚱	2779	113.03	36	221.91	78	996	(51)	472	(333)
LTL2DSTAR	1 850	88.76	41	144.09	128	1 156	(99)	475	(331)
SEMINATOR 2	1 772	98.63	33	191.56	345	1 081	(226)	428	(241)
ROLL	1 313	21.50	11	57.67	1 106	1 781	(1 041)	522	(295)

- RANKER: smallest mean and median (except ROLL), 15% TO
- RANKER +PIT: 0.7% TO
- In 22.5 % cases strictly smaller BA
- In 63.4 % cases at least as small as the best result

Conclusion

- Series of optimizations reducing the state space in rank-based complementation
- Competitive to other approaches, in 22.5 % cases strictly better

19/19

Conclusion

- Series of optimizations reducing the state space in rank-based complementation
- Competitive to other approaches, in 22.5 % cases strictly better
- Future work
 - more precise rank estimation according to automaton structure
 - generalization to TGBA
 - language inclusion checking

Conclusion

- Series of optimizations reducing the state space in rank-based complementation
- Competitive to other approaches, in 22.5 % cases strictly better
- Future work
 - more precise rank estimation according to automaton structure
 - generalization to TGBA
 - language inclusion checking

THANK YOU!

Experimental Evaluation-Time

method	mean	med.	std. dev
RANKER	10.21	0.84	28.43
RANKER+PIT	9.40	3.03	16.00
PITERMAN 🟵	7.47	6.03	8.46
Safra 🏵	15.49	7.03	35.59
SPOT	1.07	0.02	8.94
Fribourg 🥸	19.43	10.01	32.76
LTL2DSTAR	4.17	0.06	22.19
SEMINATOR 2	11.41	0.37	34.97
ROLL	42.63	14.92	67.31