
Reducing (to) the Ranks:
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Büchi Automata

Automata over infinite words

A = (Q, δ, I,F ) over Σ
I Q finite set of states
I δ transition function; δ : Q × Σ→ 2Q

I I ⊆ Q initial states
I F ⊆ Q accepting states

Accepts via looping over accepting states
Defines the class of ω-regular languages

rA : s t

a

b

b

b

a

I L(A) = aω + (ε+ a∗b)b+aω

I r a−→ r b−→ s b−→ t a−→ t a−→ · · · abbaω ∈ L(A)
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Motivation for Complementation

Model checking of linear-time properties
I property ϕ  Aϕ
I system S  AS
I checking S � ϕ  L(AS) ⊆ L(Aϕ)  L(AS) ∩ L(A{

ϕ) = ∅

Termination analysis: Ultimate Automizer [HeizmannHP]
I removing traces with proved termination
I difference automaton

Decision procedures:
I S1S: MSO over (ω,0,+1)
I ETL: extended temporal logic
I QPTL: quantified propositional temporal logic
I FO over Sturmian words
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Büchi Automata Complementation

More involved than for NFAs (cannot be determinized)
Lower bound (0.76n)n [Yan’06]

Ramsey-based [Sistla,Vardi,Volper’87][BreuersLO’12]
Determinization-based [Safra’88][Piterman’06]
Rank-based [KupfermanV’01][FriedgutKV’06][Schewe’09]
Slice-based [Vardi,Wilke’08][Kähler,Wilke’08]
Learning-based [Li,Turrini,Zhang,Schewe’18]
Subset-tuple construction [Allred,Utes-Nitche’18]
Semideterminization-based [BlahoudekDS’20]
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Rank-based Complementation

Run DAG Gα of a word α
I all runs on α in A
I vertices: (s, `); s ∈ Q, ` ∈ N

Ranking procedure (set i := 0)

1 assign rank i to vertices with finitely many
successors and remove them from Gα

2 assign rank i + 1 to vertices that cannot
reach F and remove them from Gα

3 i := i + 2; repeat while i ≤ 2|Q|

Lemma [Kupferman,Vardi’01]
If α /∈ L(A) then ∀v ∈ Gα : rank(v) ≤ 2|Q|.

rA : s t

a

b

b

b

a

r ,0 s,0

s,1 t ,1

s,2 t ,2

s,3 t ,3

s,4 t ,4
...

. . .

b

b

b

b

...

rank 2 rank 1

rank 0

bω /∈ L(A)
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Rank-based Complementation Cont.

Nondeterministically guesses run DAG ranks [Schewe’09]

Macrostates (S,O, f , i); accepting macrostates (·, ∅, ·, ·) (omit i)
I S tracks all runs of A (determinization of NFAs)
I O tracks all runs with an even rank (since a breakpoint with O = ∅)

• to accept a word decrease ranks of the runs from O
I f guesses ranks of a level in a run DAG

• tight rankings: (i) odd max rank r (ii) cover ranks {1, 3, . . . , r}

Transition function (S,O, f )
a−→ (S′,O′, f ′)

I S′-part: subset construction; S′ = δ(S,a)
I O′-part: keeps successors of O with even ranks (or a new sample if

O = ∅)
I f ′: nonincreasing tight ranking wrt δ (with even accepting states)

WAITING and TIGHT part
I in WAITING guess the point from which all

successor rankings are tight (only S-part)
I in TIGHT track tight rankings

WAITING TIGHT
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Rank-based Complementation Example

rA : s t

a

b

b

b

a

({s:1, t :0}, ∅) b−→ (S′,O′, f ′)
I S′ = δ({s, t},b) = {s, t}
I f ′(s) ≤ f (s), f ′(t) ≤ f (s),

f ′(t) is even =⇒ {s:1, t :0}
I O′ = {t} (O′ = S′ ∩ even(f ′))
I ({s:1, t :0}, {t})

{r , s}

{r}

{s, t}

{s}

{t}

∅

(
{s:1, t :0}, ∅

)

(
{s:1, t :0}, {t}

)

(
{s:1}, ∅

)
a

b

b
b

b

a

a

b

a
a

a,b

b
b

b

bb

b

b

WAITING TIGHT

({s:1, t :0}, {t}) b−→ (S′,O′, f ′)
I S′, f ′ similar to the previous case
I O′ = ∅ (O′ = δ({t},b) ∩ even(f ′))
I ({s:1, t :0}, ∅)
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Rank-based Complementation Problems

Highly nondeterministic
I when to switch from WAITING to TIGHT ?
I how to decrease ranks in TIGHT ?
I  many different (redundant) successors!

Tight rank bound b = 2|Q| − 1 is often too coarse
I unnecessarily high bound many redundant states are generated
I state space explosion combinatorial explosion wrt. b

Reduce nondeterminism and keep the ranks
as small as possible!

Lightweight optimizations
Based on the notion of super-tight runs
I a run on α ∈ L(A{) using as small ranks as possible
I enough to preserve only super-tight runs
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DELAY Optimization

More super-tight runs that differ on the position of the transition
from WAITING into TIGHT :
I S0

a−→ · · · a−→ Sk
a−→ (Sk+1, ·, fk+1)

a−→ · · · aω

I S0
a−→ · · · a−→ Sk

a−→ · · · a−→ S`
a−→ (S`+1, ·, f`+1)

a−→ · · ·

Postpone transitions to the tight part
I generate transitions only when a cycle is closed in WAITING

• similar to the C3 (cycle) condition in partial-order reduction (POR).
I reduces the number of transitions to TIGHT

Example

p q r

a

a a

a
{p}

{p,q}

{p,q, r}

a

a

a

 {p}, {p,q}

transitions to TIGHT can
be delayed until {p,q, r}

Havlena, Lengál Reducing (to) the Ranks CONCUR’21 9 / 19



DELAY Optimization

More super-tight runs that differ on the position of the transition
from WAITING into TIGHT :
I S0

a−→ · · · a−→ Sk
a−→ (Sk+1, ·, fk+1)

a−→ · · · aω

I S0
a−→ · · · a−→ Sk

a−→ · · · a−→ S`
a−→ (S`+1, ·, f`+1)

a−→ · · ·

Postpone transitions to the tight part
I generate transitions only when a cycle is closed in WAITING

• similar to the C3 (cycle) condition in partial-order reduction (POR).
I reduces the number of transitions to TIGHT

Example

p q r

a

a a

a
{p}

{p,q}

{p,q, r}

a

a

a

 {p}, {p,q}

transitions to TIGHT can
be delayed until {p,q, r}

Havlena, Lengál Reducing (to) the Ranks CONCUR’21 9 / 19



DELAY Optimization

More super-tight runs that differ on the position of the transition
from WAITING into TIGHT :
I S0

a−→ · · · a−→ Sk
a−→ (Sk+1, ·, fk+1)

a−→ · · · aω

I S0
a−→ · · · a−→ Sk

a−→ · · · a−→ S`
a−→ (S`+1, ·, f`+1)

a−→ · · ·

Postpone transitions to the tight part
I generate transitions only when a cycle is closed in WAITING

• similar to the C3 (cycle) condition in partial-order reduction (POR).
I reduces the number of transitions to TIGHT

Example

p q r

a

a a

a

{p}

{p,q}

{p,q, r}

a

a

a

 {p}, {p,q}

transitions to TIGHT can
be delayed until {p,q, r}

Havlena, Lengál Reducing (to) the Ranks CONCUR’21 9 / 19



DELAY Optimization

More super-tight runs that differ on the position of the transition
from WAITING into TIGHT :
I S0

a−→ · · · a−→ Sk
a−→ (Sk+1, ·, fk+1)

a−→ · · · aω

I S0
a−→ · · · a−→ Sk

a−→ · · · a−→ S`
a−→ (S`+1, ·, f`+1)

a−→ · · ·

Postpone transitions to the tight part
I generate transitions only when a cycle is closed in WAITING

• similar to the C3 (cycle) condition in partial-order reduction (POR).
I reduces the number of transitions to TIGHT

Example

p q r

a

a a

a
{p}

{p,q}

{p,q, r}

a

a

a

 {p}, {p,q}

transitions to TIGHT can
be delayed until {p,q, r}

Havlena, Lengál Reducing (to) the Ranks CONCUR’21 9 / 19



DELAY Optimization

More super-tight runs that differ on the position of the transition
from WAITING into TIGHT :
I S0

a−→ · · · a−→ Sk
a−→ (Sk+1, ·, fk+1)

a−→ · · · aω

I S0
a−→ · · · a−→ Sk

a−→ · · · a−→ S`
a−→ (S`+1, ·, f`+1)

a−→ · · ·

Postpone transitions to the tight part
I generate transitions only when a cycle is closed in WAITING

• similar to the C3 (cycle) condition in partial-order reduction (POR).
I reduces the number of transitions to TIGHT

Example

p q r

a

a a

a
{p}

{p,q}

{p,q, r}

a
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a

 {p}, {p,q}

transitions to TIGHT can
be delayed until {p,q, r}

{p}

{p,q}

{p,q, r}
(
{p:3,q:2, r :1}, ∅

)

a

a

a
a

a

a
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SUCCRANK Optimization I

Reasoning about WAITING

I WAITING defines the skeleton (S-part) of TIGHT

I sizes of reachable macrostates restrict the maximum rank
I bounded by the size of a max∞-often reachable macrostate d·e

• (S,O, f ) rank(f ) ≤ 2dSe − 1

Example

q r s t
a a a

{q, s}

{r , t}

{r}

a

a

a

 {r , t}

maximal∞-reach
macrostate: {r}

remove ({r , t}, ·, f ) s.t.
rank(f ) > 2|{r}| − 1 = 1
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SUCCRANK Optimization II

Refine with a minimal∞-often reachable macrostate b·c
I (S,O, f )
I q ∈ S  at most dSe − bqc states with higher rank than f (q)
I reduces the value of rank(f ); rank(f ) ≤ f (q) + 2(dSe − bqc)

Example

q rs t
aa a

a a

 
(
{r :1, s:5, t :3}, ∅

)
{r} →∗ {r , t}

d{r , s, t}e = 3, brc = 2

rank(f ) ≤ 1 + 2 = 3

redundant macrostate
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RANKSIM Optimization

Relation between state-ranks inside each macrostate
For each macrostate (S,O, f ) in every super-tight run:
I p �ors r ∧ f (p) odd ∧ f (r) odd =⇒ f (p) ≤ f (r)

• ors: odd rank simulation

Example

 
(
{q1:1, r1:3}, ∅

)
,
(
{q1:3, r1:1}, ∅

)
q1 �ors r1 and r1 �ors q1

f (q1) = f (r1)

I underapproximation �R of �ors  lfp computation from �di
• step: ∀a ∈ Σ : (δ(p, a) \ F ) �R (δ(q, a) \ F ) then p �R q
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MAXRANK Optimization

(inspired by REDAVGOUT from [Schewe’09])

Represents several runs (incl. super-tight) using a maximal run

Runs
S0

a−→ · · · a−→ Sk
a−→ ({p:1,q:3, r :3, s:0}, ·) a−→ · · ·

S0
a−→ · · · a−→ Sk

a−→ ({p:1,q:3, r :1, s:0}, ·) a−→ · · ·

S0
a−→ · · · a−→ Sk

a−→ ({p:1,q:3, r :2, s:1}, ·) a−→ · · ·

Maximal run
S0

a−→ · · · a−→ Sk
a−→ ({p:1,q:3, r :3, s:2}, ·) a−→ · · ·

Reduces the number of nondeterministic choices
I decrease ranks of all possible states in the O-set, or
I continue to the maximal macrostate

Removing macrostates using the previous optimizations
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Experimental Evaluation

Random automata Σ = {a,b} from [Tsai,Fogarty,Vardi,Tsay’11]
I starting with 15 states
I reduced using SPOT, RABIT
I removed semi-deterministic, inherently weak, unambigous, empty

language
I 2393 hard automata
I Timeout: 5 min

Implemented in C++ within RANKER
I RANKER+PIT: combination of RANKER and PITERMAN  particular

algorithm chosen according to WAITING and rank estimation
I compared with:

• GOALG (SCHEWEREDAVGOUT, SAFRA, PITERMAN, FRIBOURG)
• SPOT,
• LTL2DSTAR,
• SEMINATOR 2,
• ROLL
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Experimental Evaluation–States rank-based

10 1000 100000
Ranker-MaxR

10

1000

100000

Sc
he

we
-R

ed
Av

gO
ut

SCHEWEREDAVGOUT

no postprocessing
significant part of the state space pruned
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Experimental Evaluation–States not rank-based 1

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Pi
te

rm
an

+P
P

PITERMAN (from GOAL G)
I on average better than SAFRA, SPOT, LTL2DSTAR

determinization-based
postprocessed by autfilt
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Experimental Evaluation–States not rank-based 2
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SEMINATOR 2
semideterminization-based
postprocessed
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ROLL
learning-based
postprocessed
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Experimental Evaluation–States Cont.

method max mean med. std. dev TO wins (TO) losses (TO)

RANKER 319 119 8 051.58 185 28 891.4 360 — — — —
SCHEWEREDAVGOUT G 67 780 5 227.3 723 10 493.8 844 2030 (486) 3 (2)

RANKER 1 239 61.83 32 103.18 360 — — — —
RANKER+PIT 1 706 73.65 33 126.8 17 — — — —
PITERMAN G 1 322 88.30 40 142.19 12 1 069 (3) 469 (351)
SAFRA G 1 648 99.22 42 170.18 158 1 171 (117) 440 (319)
SPOT 2 028 91.95 38 158.13 13 907 (6) 585 (353)
FRIBOURG G 2 779 113.03 36 221.91 78 996 (51) 472 (333)
LTL2DSTAR 1 850 88.76 41 144.09 128 1 156 (99) 475 (331)
SEMINATOR 2 1 772 98.63 33 191.56 345 1 081 (226) 428 (241)
ROLL 1 313 21.50 11 57.67 1 106 1 781 (1 041) 522 (295)

RANKER: smallest mean and median (except ROLL), 15 % TO
RANKER +PIT: 0.7 % TO
In 22.5 % cases strictly smaller BA
In 63.4 % cases at least as small as the best result
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Conclusion

Series of optimizations reducing the state space in rank-based
complementation
Competitive to other approaches, in 22.5 % cases strictly better

Future work
I more precise rank estimation according to automaton structure
I generalization to TGBA
I language inclusion checking

THANK YOU!
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Experimental Evaluation–Time

method mean med. std. dev

RANKER 10.21 0.84 28.43
RANKER+PIT 9.40 3.03 16.00
PITERMAN G 7.47 6.03 8.46
SAFRA G 15.49 7.03 35.59
SPOT 1.07 0.02 8.94
FRIBOURG G 19.43 10.01 32.76
LTL2DSTAR 4.17 0.06 22.19
SEMINATOR 2 11.41 0.37 34.97
ROLL 42.63 14.92 67.31
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