Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic

Peter Habermehl¹, Vojtěch Havlena², <u>Michal Hečko</u>², Lukáš Holík², Ondřej Lengál²

¹ Université Paris Cité, IRIF, Paris, France
² Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

CAV'24

Motivation: binary search correctness

$$\varphi \colon \left(x_{low} > x_{high} \ \lor \ 0 \le x_{low} < x_{high} < |A|\right) \land$$

$$\left(x_{low} \le x_{high} \ \to \ 0 \le \frac{x_{low} + x_{high}}{2} < |A|\right)$$
The midpoint must be within array bounds

Are there valid assignments to x_{low} and x_{high} violating the assertion φ ?

Motivation: binary search correctness

$$\varphi: (x_{low} > x_{high} \lor 0 \le x_{low} < x_{high} < |A|) \land (x_{low} \le x_{high} \to 0 \le \frac{x_{low} + x_{high}}{2} < |A|)$$
The midpoint must be within array bounds

Are there valid assignments to x_{low} and x_{high} violating the assertion φ ?

We are interested in *quantified* formulae, as they frequently pose a challenge to the state-of-the-art solvers.

Key observation: Any number x can be written as its least-significant digit x_0 and remaining digits x', i.e., $x = x_0 + 10x'$

Since 5 > 2, it must hold that x' < 0, otherwise we would get, e.g.,

From atoms to automata

Encoding assignments as words

 Encoding variable assignments as words using Least Significant Bit First (LSBF) encoding

$$\sigma(x) = (-6)_{10} = (\underline{0}101)_2 = (\underline{0}101)_2$$

$$\sigma(y) = (2)_{10} = (\underline{0}10)_2 = (\underline{0}100)_2$$

$$\Leftrightarrow w_{\sigma} = x : \begin{bmatrix} 0 \\ y : \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

From atoms to automata

Encoding assignments as words

 Encoding variable assignments as words using Least Significant Bit First (LSBF) encoding

$$\sigma(x) = (-6)_{10} = (\underline{0}101)_2 = (\underline{0}101)_2$$

$$\sigma(y) = (2)_{10} = (\underline{0}10)_2 = (\underline{0}100)_2$$

$$\Leftrightarrow w_{\sigma} = x : \begin{bmatrix} 0 \\ y : \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

▶ NFA accepting the solutions of $2x - y \le 0$

Deciding linear integer arithmetic (LIA)

...the automata way

- Construct an NFA for every atom in the input formula
- ▶ Proceed inductively: construct $\mathcal{A}_{\varphi \diamond \psi}$ from \mathcal{A}_{φ} and \mathcal{A}_{ψ} using an \mathcal{A} -construction corresponding to \diamond

- ▶ Thus, for every subformula φ , construct an NFA \mathcal{A}_{φ} accepting all of its solutions
- ▶ Quantifiers $\exists x$ are handled by projecting away the variable track corresponding to x

Deciding linear integer arithmetic (LIA)

...the automata way

- Construct an NFA for every atom in the input formula
- ▶ Proceed inductively: construct $\mathcal{A}_{\varphi \diamond \psi}$ from \mathcal{A}_{φ} and \mathcal{A}_{ψ} using an \mathcal{A} -construction corresponding to \diamond

- Thus, for every subformula φ , construct an NFA \mathcal{A}_{φ} accepting all of its solutions
- ▶ Quantifiers $\exists x$ are handled by projecting away the variable track corresponding to x

Very simple procedure → can have a poor performance even at the induction base when constructing an NFA for an atom

A comprehensive example

Introducing algebraic reasoning to the A-based procedure

An intuitive overview

- 1. Rewriting formulae into equivalent ones
 - Core theme: finding a value of an existentially quantified variable that restricts the free variables the least
 - Result is much easier to decide using automata (smaller number of intermediate automata with less states)

Introducing algebraic reasoning to the A-based procedure

An intuitive overview

- 1. Rewriting formulae into equivalent ones
 - Core theme: finding a value of an existentially quantified variable that restricts the free variables the least
 - ► Result is much easier to decide using automata (smaller number of intermediate automata with less states)

- 2. Algebraic reasoning during the decision procedure
 - states = LIA formulae precisely describing their languages
 - Compact representation of the language of every state on-the-fly pruning without the need to have the entire automaton upfront

Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that $\varphi \Leftrightarrow \psi$ with \mathcal{A}_{ψ} being easier to construct than \mathcal{A}_{φ}

- ▶ Core idea: Given φ , find ψ such that $\varphi \Leftrightarrow \psi$ with \mathcal{A}_{ψ} being easier to construct than \mathcal{A}_{φ}
- Use dataflow analysis to extract useful variable relations
 - → notion of monotonicity (c-best-from-{below, above})

- ▶ Core idea: Given φ , find ψ such that $\varphi \Leftrightarrow \psi$ with \mathcal{A}_{ψ} being easier to construct than \mathcal{A}_{φ}
- Use dataflow analysis to extract useful variable relations
 - ▶ ~ notion of monotonicity (c-best-from-{below, above})

- \triangleright Use the results to rewrite φ , removing existential quantifiers
 - φ is c-best-from-below w.r.t. $y \rightsquigarrow \exists y (\varphi(\vec{x}, y)) \Leftrightarrow \varphi[c/y]$
 - basis for other tricks such as modulo linearization

- ▶ Core idea: Given φ , find ψ such that $\varphi \Leftrightarrow \psi$ with \mathcal{A}_{ψ} being easier to construct than \mathcal{A}_{φ}
- Use dataflow analysis to extract useful variable relations
 - ▶ ~ notion of monotonicity (c-best-from-{below, above})

- ▶ Core idea: Given φ , find ψ such that $\varphi \Leftrightarrow \psi$ with \mathcal{A}_{ψ} being easier to construct than \mathcal{A}_{φ}
- Use dataflow analysis to extract useful variable relations
 - ▶ ~ notion of monotonicity (c-best-from-{below, above})

Duality between formulae and states

NFA
$$\mathcal{A}_{\varphi}$$
 for $\varphi = 2x - y \leq 0$

Using state semantics to improve efficiency

Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of \mathcal{A}_{φ} 's states directly, e.g.,

$$Post(3x - y \le 2 \land x \equiv_3 1, \sigma) = Post(3x - y \le 2, \sigma) \land Post(x \equiv_3 1, \sigma)$$

Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of \mathcal{A}_{φ} 's states directly, e.g.,

$$Post(3x - y \le 2 \land x \equiv_3 1, \sigma) = Post(3x - y \le 2, \sigma) \land Post(x \equiv_3 1, \sigma)$$

applications: disjunction pruning, state rewriting

Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of \mathcal{A}_{φ} 's states directly, e.g.,

$$Post(3x - y \le 2 \land x \equiv_3 1, \sigma) = Post(3x - y \le 2, \sigma) \land Post(x \equiv_3 1, \sigma)$$

applications: disjunction pruning, state rewriting

Disjunction pruning:

- A state $\psi_1 \lor \psi_2 \lor \cdots \lor \psi_k$ can be rewritten into an equivalent state $\psi_2 \lor \cdots \lor \psi_k$ given $\psi_2 \lor \cdots \lor \psi_k \Rightarrow \psi_1$.
- ► Testing $\varphi \Rightarrow \psi$ is hard, therefore, we underapproximate using structural subsumption \leq_s

Enter Amaya

- new open-source LIA SMT solver based on finite automata
- ► novel optimizations of the classical A-based decision procedure
- ▶ implemented in Python and C++
 - uses the sylvan¹ library providing an MTBDD implementation

¹ van Dijk, T., van de Pol, J. TACAS'2015

Discussion of used benchmarks

Performance evaluated on 2 benchmark families:

- ► SMT-COMP: 372 arithmetic-heavy quantified formulae from SMT-COMP's LIA and NIA categories
 - from the 20190429-UltimateAutomizerSvcomp2019 and UltimateAutomizer directories
- Frobenius: 55 instances of the Frobenius coin problem for two coins

$$\forall \mathbf{n}(x \neq \mathbf{w} \cdot \mathbf{n}^{\mathsf{T}}) \land (\forall y((\forall \mathbf{m}(y \neq \mathbf{w} \cdot \mathbf{m}^{\mathsf{T}})) \rightarrow y \leq x))$$

where $\mathbf{w} \in \mathbb{N}^2$ are parameters (two consequent primes)

Runtime ([s]) comparison with the state of the art

SMT-COMP (372)

solver	timeouts	mean	median	std. dev.	wins		losses	
Amaya	17	1.12	0.26	3.58				
Amayanoopt	73	2.32	0.27	8.16	232	(56)	113	(0)
Lash	114	3.04	0.01	9.94	178	(98)	178	(1)
Z3	31	0.11	0.01	1.35	31	(28)	338	(14)
CVC5	28	0.20	0.02	2.42	32	(28)	340	(17)
Princess	50	4.14	1.14	9.31	354	(40)	8	(7)

Runtime ([s]) comparison with the state of the art

SMT-COMP (372)

solver	timeouts	mean	median	std. dev.	wins		losses	
Amaya	17	1.12	0.26	3.58				
Amayanoopt	73	2.32	0.27	8.16	232	(56)	113	(0)
Lash	114	3.04	0.01	9.94	178	(98)	178	(1)
Z3	31	0.11	0.01	1.35	31	(28)	338	(14)
CVC5	28	0.20	0.02	2.42	32	(28)	340	(17)
Princess	50	4.14	1.14	9.31	354	(40)	8	(7)

Frobenius (55)

solver	timeouts	mean	median	std. dev.	wins		losses	
Amaya	5	11.79	3.54	16.03				
A MAYA $_{noopt}$	5	11.54	4.06	14.65	27	(0)	21	(0)
Lash	9	15.72	5.74	20.32	37	(5)	14	(0)
Z3	51	1.66	0.49	2.69	48	(46)	2	(0)
CVC5	54	0.05	0.05	_	49	(49)	1	(0)
Princess	13	46.32	45.92	29.03	50	(8)	0	(0)

Runtime ([s]) comparison with the state of the art

Figure: Runtime comparison on the Frobenius benchmark

Runtime ([s]) improvements over the classical constructions

Future work, open problems

Open problems:

- combination with other SMT theories, e.g., theory of uninterpreted functions
- ▶ extending LIA with a predicate $IsPow2(x) \stackrel{def}{\Leftrightarrow} \exists k(x=2^k)$
 - \blacktriangleright trivial, but (a good) $\mathcal{O}(\cdot)$ of the \mathcal{A} -based approach is unknown
- Can the duality between states and formulae be used in different theories, e.g., WS1S?

Engineering challenges:

- Parallelization based on the formula structure
- Second-order DAGification of formula

Conclusion

- ► LIA can be decided efficiently using finite automata
- A-based approach exhibits interesting properties w.r.t. quantifiers
- automata-logic connection can be used to greatly improve the performance of the original procedure
- SMT-COMP'24 2nd place in NIA, 1st place in NIA(24s)

Monotonicity-based optimizations - modulo linearization

Let $\psi(\vec{x}, y, m)$ be 17-best-from-below w.r.t. y

▶ larger $y \leadsto \text{more } \vec{x}$ values satisfy $\varphi(\vec{x}, m)$, but y cannot be larger than 17

$$2x - y \le 3 \land 3x - 2y \le 3 \land 2y \le 34$$

$$\exists y, m(\psi(\vec{x}, y, m) \land y + m \equiv_{37} 12 \land 1 \leq m \leq 50)$$

$$\exists y, m(\psi \land ((y \ge -19 \land y \le 11 \land y + m = 12) \lor (y \ge -1 \land y \le 17 \land y + m = 49))$$

Monotonicity-based optimizations

Let $\psi(\vec{x}, y)$ be a 42-increasing w.r.t. y

 $∃y(ψ(\vec{x},y) \land y ≡_M k) ⇔ ψ(\vec{x},c') where$ $c' = max{ℓ ∈ ℤ | ℓ ≡_M k, ℓ ≤ c}$

Fromulae ⇒ states — rewriting into equivalent formulae

A formula ψ can be rewritten into an equivalent ψ' whenever suitable.

$$\psi \colon \exists y, m (f_0 \le y \land m \le f_1 + 42 \land y \le -1 \land m \ge 0 \land m \le 0 \land m \equiv_7 y)$$

$$\downarrow m = 0$$

$$\psi' \colon \exists y (f_0 \le y \land 0 \le f_1 + 42 \land y \le -1 \land 0 \equiv_7 y)$$

$$\downarrow y = -7$$

$$\psi'' \colon f_0 \le -7 \land 0 \le f_1 + 42$$

And continue building the automaton using $Post(\psi'', \sigma)$.