
Algebraic Reasoning Meets Automata

in Solving Linear Integer Arithmetic

Peter Habermehl1, Vojtěch Havlena2, Michal Hečko2,
Lukáš Hoĺık2, Onďrej Lengál2

1 Université Paris Cité, IRIF, Paris, France
2 Faculty of Information Technology, Brno University of Technology,

Brno, Czech Republic

CAV’24

Motivation: binary search correctness

(xlow > xhigh ∨ 0 ≤ xlow < xhigh < |A|) ∧

(xlow ≤ xhigh → 0 ≤ xlow + xhigh
2

< |A|)

φ :

The midpoint must be within array bounds

Are there valid assignments to xlow
and xhigh violating the assertion φ?

SMT solver

SAT + Model
xlow = . . . , xhigh = . . .

UNSAT (no model)

We are interested in quantified formulae, as they frequently pose
a challenge to the state-of-the-art solvers.

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 1 / 17

Motivation: binary search correctness

(xlow > xhigh ∨ 0 ≤ xlow < xhigh < |A|) ∧

(xlow ≤ xhigh → 0 ≤ xlow + xhigh
2

< |A|)

φ :

The midpoint must be within array bounds

Are there valid assignments to xlow
and xhigh violating the assertion φ?

SMT solver

SAT + Model
xlow = . . . , xhigh = . . .

UNSAT (no model)

We are interested in quantified formulae, as they frequently pose
a challenge to the state-of-the-art solvers.

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 1 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

x0x1x2· · ·xn 1 2≤

x ≤ 12

x ′

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

x0x1x2· · ·xn 1 2≤

x ≤ 12

x ′

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

5x1x2· · ·xn 1 2≤

x ≤ 12

x ′

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

5x1x2· · ·xn 1 2≤

x ≤ 12

x ′

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

5x1x2· · ·xn 1 2≤

x ≤ 12

x ′

Since 5 > 2, it must hold that x ′ ≤ 0, otherwise we would get, e.g.,

51 1 2≤

521 1 2≤

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

Intuition: Constructing automata from atomic formulae

Key observation: Any number x can be written as its
least-significant digit x0 and remaining digits x ′, i.e., x = x0+10x ′

x ≤ 12

x ′ ≤ 1

x ′ ≤ 0

x0 : 0

x0 : 1

x0 : 2

x0 : 3

...

x0 : 9

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 17

From atoms to automata
Encoding assignments as words

▶ Encoding variable assignments as words using Least
Significant Bit First (LSBF) encoding

σ(x)

σ(y)

=

=

(−6)10

(2)10

=

=

(0101)2

(010)2

=

=

(0101)2

(0100)2
⇝ wσ =

x :
y :

[
0
0

][
1
1

][
0
0

][
1
0

]

▶ NFA accepting the solutions of 2x − y ≤ 0

0 −1 −2

⊤

x :
y :

[
1
0

]
,

[
1
1

]x :
y :

[
0
0

]
,

[
0
1

]
x :
y :

[
0
0

]
,

[
1
1

]
x :
y :

[
1
0

]

x :
y :

[
0
1

]
x :
y :

[
0
0

]
,

[
0
1

]

x :
y :

[
1
0

]
,

[
1
1

]

x :
y :

[
0
0

]
,

[
1
0

]
,

[
1
1

] x :
y :

[
1
0

]
,

[
1
1

]
x :
y :

[
1
0

]

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 3 / 17

From atoms to automata
Encoding assignments as words

▶ Encoding variable assignments as words using Least
Significant Bit First (LSBF) encoding

σ(x)

σ(y)

=

=

(−6)10

(2)10

=

=

(0101)2

(010)2

=

=

(0101)2

(0100)2
⇝ wσ =

x :
y :

[
0
0

][
1
1

][
0
0

][
1
0

]

▶ NFA accepting the solutions of 2x − y ≤ 0

0 −1 −2

⊤

x :
y :

[
1
0

]
,

[
1
1

]x :
y :

[
0
0

]
,

[
0
1

]
x :
y :

[
0
0

]
,

[
1
1

]
x :
y :

[
1
0

]

x :
y :

[
0
1

]
x :
y :

[
0
0

]
,

[
0
1

]

x :
y :

[
1
0

]
,

[
1
1

]

x :
y :

[
0
0

]
,

[
1
0

]
,

[
1
1

] x :
y :

[
1
0

]
,

[
1
1

]
x :
y :

[
1
0

]

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 3 / 17

Deciding linear integer arithmetic (LIA)
. . . the automata way

▶ Construct an NFA for every atom in the input formula

▶ Proceed inductively: construct Aφ⋄ψ from Aφ and Aψ using
an A-construction corresponding to ⋄

φ ∧ ψ L(Aφ) ∩ L(Aφ)⇝ φ ∨ ψ L(Aφ) ∪ L(Aφ)⇝ ¬φ Σ∗ \ L(Aφ)⇝

▶ Thus, for every subformula φ, construct an NFA Aφ accepting
all of its solutions

▶ Quantifiers ∃x are handled by projecting away the variable
track corresponding to x

0 −1

x :
y :

[
1
0

]
,

[
1
1

]
0 −1

y :
[
0
]
,
[
1
]

⇝

▶ Very simple procedure ⇝ can have a poor performance even
at the induction base when constructing an NFA for an atom
▶ φ = 55x + 77y ≤ 0 ⇝ |Aφ| = 55 + 77 + 1

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 4 / 17

Deciding linear integer arithmetic (LIA)
. . . the automata way

▶ Construct an NFA for every atom in the input formula

▶ Proceed inductively: construct Aφ⋄ψ from Aφ and Aψ using
an A-construction corresponding to ⋄

φ ∧ ψ L(Aφ) ∩ L(Aφ)⇝ φ ∨ ψ L(Aφ) ∪ L(Aφ)⇝ ¬φ Σ∗ \ L(Aφ)⇝

▶ Thus, for every subformula φ, construct an NFA Aφ accepting
all of its solutions

▶ Quantifiers ∃x are handled by projecting away the variable
track corresponding to x

0 −1

x :
y :

[
1
0

]
,

[
1
1

]
0 −1

y :
[
0
]
,
[
1
]

⇝

▶ Very simple procedure ⇝ can have a poor performance even
at the induction base when constructing an NFA for an atom
▶ φ = 55x + 77y ≤ 0 ⇝ |Aφ| = 55 + 77 + 1

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 4 / 17

A comprehensive example

β’
s A

ST

Does β = ∃x(¬(3x + y ≤ 3 ∧ 2x − 4y ≤ 0)) have a model?

∃x

¬

∧

ψ : 3x + y ≤ 3 φ : 2x − 4y ≤ 0

parse(β)

L(A∃)
?

̸= ∅

A∃

AC

A∩

Aψ Aφ

(4) Complement(A∩)

(5) Projectionx(AC)

(6) DFS(A∃)

(3) Intersection(Aψ,Aφ)

(1) IneqToNFA(φ)
(2) IneqToNFA(ψ)

⇔

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 5 / 17

Introducing algebraic reasoning to the A-based procedure
An intuitive overview

1. Rewriting formulae into equivalent ones
▶ Core theme: finding a value of an existentially quantified

variable that restricts the free variables the least
▶ Result is much easier to decide using automata (smaller

number of intermediate automata with less states)

2. Algebraic reasoning during the decision procedure
▶ states = LIA formulae precisely describing their languages
▶ compact representation of the language of every state ⇝

on-the-fly pruning without the need to have the entire
automaton upfront

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 6 / 17

Introducing algebraic reasoning to the A-based procedure
An intuitive overview

1. Rewriting formulae into equivalent ones
▶ Core theme: finding a value of an existentially quantified

variable that restricts the free variables the least
▶ Result is much easier to decide using automata (smaller

number of intermediate automata with less states)

2. Algebraic reasoning during the decision procedure
▶ states = LIA formulae precisely describing their languages
▶ compact representation of the language of every state ⇝

on-the-fly pruning without the need to have the entire
automaton upfront

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 6 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

▶ Use the results to rewrite φ , removing existential quantifiers

▶ φ is c-best-from-below w.r.t. y ⇝ ∃y(φ(x⃗ , y)) ⇔ φ[c/y]
▶ basis for other tricks such as modulo linearization

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

▶ Use the results to rewrite φ , removing existential quantifiers

▶ φ is c-best-from-below w.r.t. y ⇝ ∃y(φ(x⃗ , y)) ⇔ φ[c/y]
▶ basis for other tricks such as modulo linearization

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

▶ Use the results to rewrite φ , removing existential quantifiers

▶ φ is c-best-from-below w.r.t. y ⇝ ∃y(φ(x⃗ , y)) ⇔ φ[c/y]
▶ basis for other tricks such as modulo linearization

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

▶ Use the results to rewrite φ , removing existential quantifiers

▶ φ is c-best-from-below w.r.t. y ⇝ ∃y(φ(x⃗ , y)) ⇔ φ[c/y]
▶ basis for other tricks such as modulo linearization

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

∧

x ≤ 41989 z + x ≤ 168

⇝

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Rewriting using monotonicity
Exploiting variable relations to improve performance

▶ Core idea: Given φ , find ψ such that φ ⇔ ψ with Aψ being
easier to construct than Aφ

▶ Use dataflow analysis to extract useful variable relations
▶ ⇝ notion of monotonicity (c-best-from-{below, above})

∃y

∧

∧

3x − 2999y ≤ 10 z + x ≤ 4y

y ≤ 42

y should be as
large as possible

•
y should be as
large as possible •

y cannot be
larger than 42

•

The best value
for y is y = 42

∧

x ≤ 41989 z + x ≤ 168

⇝

|A| ∼= 3002 |A| ∼= 16

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 7 / 17

Top-down reformulation of the decision procedure
Duality between formulae and states

NFA Aφ for φ = 2x − y ≤ 0

0 −1 −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1
0 1

2x − y ≤ −12x − y ≤ 0 2x − y ≤ −2

x :
y :

0 0
0 1

x :
y :

1 1
0 1

x :
y :

0 1
0 1

x :
y :

0
1

x :
y :

1
0

x :
y :

0 0
0 1

x :
y :

1 1
0 1

⇔

Classical procedure sees states opaquely

What can be gained by looking at states as formulae?

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 8 / 17

Top-down reformulation of the decision procedure
Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of
Aφ’s states directly, e.g.,

Post(3x − y ≤ 2 ∧ x ≡3 1 , σ) = Post(3x − y ≤ 2 , σ) ∧ Post(x ≡3 1 , σ)

▶ applications: disjunction pruning, state rewriting

Disjunction pruning:

▶ A state ψ1 ∨ ψ2 ∨ · · · ∨ ψk can be rewritten into an
equivalent state ψ2 ∨ · · · ∨ ψk given ψ2 ∨ · · · ∨ ψk ⇒ ψ1 .

▶ Testing φ ⇒ ψ is hard, therefore, we underapproximate using
structural subsumption ⪯s

∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 9 / 17

Top-down reformulation of the decision procedure
Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of
Aφ’s states directly, e.g.,

Post(3x − y ≤ 2 ∧ x ≡3 1 , σ) = Post(3x − y ≤ 2 , σ) ∧ Post(x ≡3 1 , σ)

▶ applications: disjunction pruning, state rewriting

Disjunction pruning:

▶ A state ψ1 ∨ ψ2 ∨ · · · ∨ ψk can be rewritten into an
equivalent state ψ2 ∨ · · · ∨ ψk given ψ2 ∨ · · · ∨ ψk ⇒ ψ1 .

▶ Testing φ ⇒ ψ is hard, therefore, we underapproximate using
structural subsumption ⪯s

∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 9 / 17

Top-down reformulation of the decision procedure
Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of
Aφ’s states directly, e.g.,

Post(3x − y ≤ 2 ∧ x ≡3 1 , σ) = Post(3x − y ≤ 2 , σ) ∧ Post(x ≡3 1 , σ)

▶ applications: disjunction pruning, state rewriting

Disjunction pruning:

▶ A state ψ1 ∨ ψ2 ∨ · · · ∨ ψk can be rewritten into an
equivalent state ψ2 ∨ · · · ∨ ψk given ψ2 ∨ · · · ∨ ψk ⇒ ψ1 .

▶ Testing φ ⇒ ψ is hard, therefore, we underapproximate using
structural subsumption ⪯s

∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 9 / 17

Top-down reformulation of the decision procedure
Using state semantics to improve efficiency

▶ Given a non-atomic φ , the procedure constructs successors of
Aφ’s states directly, e.g.,

Post(3x − y ≤ 2 ∧ x ≡3 1 , σ) = Post(3x − y ≤ 2 , σ) ∧ Post(x ≡3 1 , σ)

▶ applications: disjunction pruning, state rewriting

Disjunction pruning:

▶ A state ψ1 ∨ ψ2 ∨ · · · ∨ ψk can be rewritten into an
equivalent state ψ2 ∨ · · · ∨ ψk given ψ2 ∨ · · · ∨ ψk ⇒ ψ1 .

▶ Testing φ ⇒ ψ is hard, therefore, we underapproximate using
structural subsumption ⪯s

∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 9 / 17

Enter Amaya

q1

q2 q3

q4

q5

q6

ζ0

ζ1

ζ2, ζ0

ζ1ζ1, ζ0

ζ2

ζ0ζ0, ζ1

ζ0, ζ2

ζ1

ζ1, ζ2
q3

q1

Amaya

▶ new open-source LIA SMT solver
based on finite automata

▶ novel optimizations of the classical
A-based decision procedure

▶ implemented in Python and C++

▶ uses the sylvan1 library
providing an MTBDD
implementation

1 van Dijk, T., van de Pol, J. TACAS’2015

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 10 / 17

Performance evaluation
Discussion of used benchmarks

Performance evaluated on 2 benchmark families:
▶ SMT-COMP: 372 arithmetic-heavy quantified formulae from

SMT-COMP’s LIA and NIA categories
▶ from the 20190429-UltimateAutomizerSvcomp2019

and UltimateAutomizer directories

▶ Frobenius: 55 instances of the Frobenius coin problem for
two coins

∀n(x ̸= w · n⊺) ∧ (∀y((∀m(y ̸= w ·m⊺)) → y ≤ x))

where w ∈ N2 are parameters (two consequent primes)

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 11 / 17

Performance evaluation
Runtime ([s]) comparison with the state of the art

SMT-COMP (372)

solver timeouts mean median std. dev. wins losses
Amaya 17 1.12 0.26 3.58
Amayanoopt 73 2.32 0.27 8.16 232 (56) 113 (0)
Lash 114 3.04 0.01 9.94 178 (98) 178 (1)
Z3 31 0.11 0.01 1.35 31 (28) 338 (14)
cvc5 28 0.20 0.02 2.42 32 (28) 340 (17)
Princess 50 4.14 1.14 9.31 354 (40) 8 (7)

Frobenius (55)

solver timeouts mean median std. dev. wins losses
Amaya 5 11.79 3.54 16.03
Amayanoopt 5 11.54 4.06 14.65 27 (0) 21 (0)
Lash 9 15.72 5.74 20.32 37 (5) 14 (0)
Z3 51 1.66 0.49 2.69 48 (46) 2 (0)
cvc5 54 0.05 0.05 — 49 (49) 1 (0)
Princess 13 46.32 45.92 29.03 50 (8) 0 (0)

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 12 / 17

Performance evaluation
Runtime ([s]) comparison with the state of the art

SMT-COMP (372)

solver timeouts mean median std. dev. wins losses
Amaya 17 1.12 0.26 3.58
Amayanoopt 73 2.32 0.27 8.16 232 (56) 113 (0)
Lash 114 3.04 0.01 9.94 178 (98) 178 (1)
Z3 31 0.11 0.01 1.35 31 (28) 338 (14)
cvc5 28 0.20 0.02 2.42 32 (28) 340 (17)
Princess 50 4.14 1.14 9.31 354 (40) 8 (7)

Frobenius (55)

solver timeouts mean median std. dev. wins losses
Amaya 5 11.79 3.54 16.03
Amayanoopt 5 11.54 4.06 14.65 27 (0) 21 (0)
Lash 9 15.72 5.74 20.32 37 (5) 14 (0)
Z3 51 1.66 0.49 2.69 48 (46) 2 (0)
cvc5 54 0.05 0.05 — 49 (49) 1 (0)
Princess 13 46.32 45.92 29.03 50 (8) 0 (0)

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 12 / 17

Performance evaluation
Runtime ([s]) comparison with the state of the art

2 7 17 29 41 53 67 79 97 107 127 139 157 173 191 199 227 239 257
Coin denominations

0

10

20

30

40

50

60

Ru
nt

im
e

[s
]

Timeout=60.0 [s]

amaya-noop
amaya
z3
cvc5
princess
lash

Figure: Runtime comparison on the Frobenius benchmark

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 13 / 17

Performance evaluation
Runtime ([s]) improvements over the classical constructions

0.1 1 10
0.1

1

10

amaya

am
ay

a-
no

op
t

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 14 / 17

Future work, open problems

Open problems:

▶ combination with other SMT theories, e.g., theory of
uninterpreted functions

▶ extending LIA with a predicate IsPow2(x)
def⇔ ∃k(x = 2k)

▶ trivial, but (a good) O(·) of the A-based approach is unknown

▶ Can the duality between states and formulae be used in
different theories, e.g., WS1S?

Engineering challenges:

▶ Parallelization based on the formula structure

▶ Second-order DAGification of formula

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 15 / 17

Conclusion

q1

q2 q3

q4

q5

q6

ζ0

ζ1

ζ2, ζ0

ζ1ζ1, ζ0

ζ2

ζ0ζ0, ζ1

ζ0, ζ2

ζ1

ζ1, ζ2
q3

q1

Amaya

▶ LIA can be decided efficiently
using finite automata

▶ A-based approach exhibits
interesting properties w.r.t.
quantifiers

▶ automata-logic connection can be
used to greatly improve
the performance of the original
procedure

▶ SMT-COMP’24 - 2nd place
in NIA, 1st place in NIA(24s)

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 16 / 17

q0 q1

q2q3

qf

y
z
m
v


0 0 1 1
0 0 ? ?
0 1 0 1
? 1 ? 1



y
z
m
v


0 0
1 1
0 1
? 1



y
z
m
v


0 0 1 1
? ? 1 1
0 1 0 1
? 1 ? 1

y
z
m
v


1 1
0 0
0 1
? 1



y
z
m
v


0 1
0 ?
1 1
0 0



y
z
m
v


0 1
0 ?
0 0
1 1


y
z
m
v


1
0
1
0



y
z
m
v


0
1
0
1



y
z
m
v


0 0 1 1
0 0 ? ?
0 1 0 1
0 ? 0 ?

y
z
m
v


1 1
0 0
0 1
0 ?



y
z
m
v


0 0
1 1
0 1
0 ?



y
z
m
v


0 0 1 1
? ? 1 1
0 1 0 1
0 ? 0 ?


y
z
m
v


1
0
0
1



y
z
m
v


0
1
1
1


y
z
m
v


0 0
1 1
0 1
0 ?



y
z
m
v


0 0
? ?
0 1
0 ?



y
z
m
v


0
?
1
0



y
z
m
v


0
1
1
0



Thank you for your attention.

Questions?

SCC of Aφ for φ = z ≤ y ∧ 0 ≤ y ∧m ≤ v + 300007

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 17 / 17

Monotonicity-based optimizations - modulo linearization

Let ψ(x⃗ , y ,m) be 17-best-from-below w.r.t. y
▶ larger y ⇝ more x⃗ values satisfy φ(x⃗ ,m), but y cannot be

larger than 17
▶ 2x − y ≤ 3 ∧ 3x − 2y ≤ 3 ∧ 2y ≤ 34

∃y ,m(ψ(x⃗ , y ,m) ∧ y +m ≡37 12 ∧ 1 ≤ m ≤ 50)

∃y ,m(ψ ∧ ((y ≥ −19 ∧ y ≤ 11 ∧ y +m = 12) ∨
(y ≥ −1 ∧ y ≤ 17 ∧ y +m = 49))

⇔

y

m

−20 −10 10 20

10

20

30

40

50

0

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 1 / 3

Monotonicity-based optimizations

Let ψ(x⃗ , y) be a 42-increasing w.r.t. y

▶ ∃y(ψ(x⃗ , y) ∧ y ≡M k) ⇔ ψ(x⃗ , c ′) where
c ′ = max{ℓ ∈ Z | ℓ ≡M k , ℓ ≤ c}

∃y(x − 2z ≤ 3 ∧ z < y ∧ x − 13y ≤ 2z ∧ y ≤ 42 ∧ y ≡9 0)

x − 2z ≤ 3 ∧ z < 36 ∧ x − 13 · 36 ≤ 2z
⇔

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 2 / 3

Fromulae −⇀↽− states — rewriting into equivalent formulae

A formula ψ can be rewritten into an equivalent ψ′ whenever
suitable.

ψ : ∃y ,m(f0 ≤ y ∧m ≤ f1 + 42 ∧ y ≤ −1 ∧m ≥ 0 ∧m ≤ 0 ∧m ≡7 y)

ψ′ : ∃y(f0 ≤ y ∧ 0 ≤ f1 + 42 ∧ y ≤ −1 ∧ 0 ≡7 y)

ψ′′ : f0 ≤ −7 ∧ 0 ≤ f1 + 42

m = 0

y = −7

And continue building the automaton using Post(ψ′′, σ).

Michal Hečko Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 3 / 3

	Appendix

