
Fully Automated Shape Analysis
Based on Forest Automata

Lukáš Holı́k Ondřej Lengál Adam Rogalewicz
Jiřı́ Šimáček Tomáš Vojnar

Brno University of Technology, Czech Republic

@CAV’13, St. Petersburg

July 17, 2013

Shape Analysis

Precise shape analysis:

▸ a notoriously difficult problem
• dealing with∞ sets of complex graphs

▸ many different solutions: logic, automata, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 2 / 17

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, local reasoning of separation logic

with
, flexibility and generality of tree automata (TA)

by
▸ splitting the heap into tree components

and
▸ TA-based representation of sets of heaps

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 3 / 17

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, local reasoning of separation logic

with
, flexibility and generality of tree automata (TA)

by
▸ splitting the heap into tree components

and
▸ TA-based representation of sets of heaps

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 3 / 17

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, local reasoning of separation logic

with
, flexibility and generality of tree automata (TA)

by
▸ splitting the heap into tree components

and
▸ TA-based representation of sets of heaps

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 3 / 17

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, local reasoning of separation logic

with
, flexibility and generality of tree automata (TA)

by
▸ splitting the heap into tree components

and
▸ TA-based representation of sets of heaps

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 3 / 17

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, local reasoning of separation logic

with
, flexibility and generality of tree automata (TA)

by
▸ splitting the heap into tree components

and
▸ TA-based representation of sets of heaps

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 3 / 17

Heap Representation

Forest decomposition of a heap

▸ Identify cut-points
nodes referenced:

● by variables, or
● multiple times

▸ Split the heap into tree components

• references are explicit

▸ Sets of heaps:
• tree automata to represent sets of tree components
• tuple of tree automata (TA1, . . . ,TAn); forest automaton (FA)

Cartesian semantics

�

�
�

�
�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 4 / 17

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components

• references are explicit

▸ Sets of heaps:
• tree automata to represent sets of tree components
• tuple of tree automata (TA1, . . . ,TAn); forest automaton (FA)

Cartesian semantics

1

�

�

3 2

�

�
�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 4 / 17

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components

• references are explicit
▸ Sets of heaps:

• tree automata to represent sets of tree components
• tuple of tree automata (TA1, . . . ,TAn); forest automaton (FA)

Cartesian semantics

1

�

�

3 2

�

�
�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 4 / 17

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
• references are explicit

▸ Sets of heaps:
• tree automata to represent sets of tree components
• tuple of tree automata (TA1, . . . ,TAn); forest automaton (FA)

Cartesian semantics

1

�

�

3

2̄

2̄ 2

�

�
�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 4 / 17

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
• references are explicit

▸ Sets of heaps:
• tree automata to represent sets of tree components
• tuple of tree automata (TA1, . . . ,TAn); forest automaton (FA)

Cartesian semantics

1

�

�

3

2̄

2̄ 2

�

�
�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 4 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements

Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs

Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Analysis

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Standard memory manipulating statements
Abstract transformers execute the statements on FAs
Acceleration collapses states of component TAs

q1 q2 q3

TA

next next ; q∗ q3
next

next T̂A

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 5 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

. . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees

/ fails for more complex data structures
▸ unbounded number of cut-points ; sets of unboundedly many FAs

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), lists of circular lists,
• trees with parent pointers,
• skip lists, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 6 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs

▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS

: L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. . .x:

next next next next next

prev prev prev prev prev

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

1 . . .x:
DLS DLS DLS DLS DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

q1 q2 q3 q4 q5 . . .
DLS DLS DLS DLS DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS : L(DLS) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 2
in out

next

prev

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

q∗ qf
DLS

DLS

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 7 / 17

Learning of Boxes

The Challenge

Where to get the boxes?

CAV’11 — database of boxes

here — automatic learning

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 8 / 17

Learning of Boxes

The Challenge

Where to get the boxes?

CAV’11 — database of boxes

here — automatic learning

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 8 / 17

Learning of Boxes

Task of the learning algorithm

Identify suitable subgraphs of the heap to be folded into boxes.

suitable subgraph:

▸ when replaced with box , in-degree of some cutpoint drops to 1,

▸ acceleration ; FA looping over box
• representing heaps with unboundedly many cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 9 / 17

Learning of Boxes

Task of the learning algorithm

Identify suitable subgraphs of the heap to be folded into boxes.

suitable subgraph:

▸ when replaced with box , in-degree of some cutpoint drops to 1,

▸ acceleration ; FA looping over box
• representing heaps with unboundedly many cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 9 / 17

Learning of Boxes

Task of the learning algorithm

Identify suitable subgraphs of the heap to be folded into boxes.

suitable subgraph:

▸ when replaced with box , in-degree of some cutpoint drops to 1,

▸ acceleration ; FA looping over box
• representing heaps with unboundedly many cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 9 / 17

Learning of Boxes

suitable subgraph: compromise between

▸ small size

• reusability — acceleration can collapse states

▸ large size
• effectively hide cutpoints — subgraphs with small interfaces

The size matters!

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 10 / 17

Learning of Boxes

suitable subgraph: compromise between

▸ small size

• reusability — acceleration can collapse states

▸ large size
• effectively hide cutpoints — subgraphs with small interfaces

The size matters!

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 10 / 17

Learning of Boxes

1 building stones — smallest subgraphs meaningful to be folded:

2 handle interface
▸ compose intersecting subgraphs prevent∞ nesting

▸ enclose paths from inner nodes to leaves
prevent∞
interface nodes

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 11 / 17

Learning of Boxes

1 building stones — smallest subgraphs meaningful to be folded:

2 handle interface
▸ compose intersecting subgraphs prevent∞ nesting

▸ enclose paths from inner nodes to leaves
prevent∞
interface nodes

[TODO: rewrite this slide (explain on the example)]

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 11 / 17

Learning of Boxes

1 building stones — smallest subgraphs meaningful to be folded:

2 handle interface
▸ compose intersecting subgraphs prevent∞ nesting

▸ enclose paths from inner nodes to leaves
prevent∞
interface nodes

[TODO: rewrite this slide (explain on the example)]Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 11 / 17

Learning of Boxes

3 where to start?

▸ prefer subgraphs with less cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 12 / 17

Learning of Boxes

2 cut-points

5 cut-points

3 where to start?

▸ prefer subgraphs with less cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 12 / 17

Learning of Boxes

2 cut-points

5 cut-points

3 where to start?

▸ prefer subgraphs with less cut-points

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 12 / 17

Learning inside Acceleration

learning and folding of boxes in the acceleration loop

The Goal
Fold boxes that will, after acceleration, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Acceleration Loop
2 Unfold solo boxes
3 repeat
4 Accelerate
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 13 / 17

Learning inside Acceleration

learning and folding of boxes in the acceleration loop

The Goal
Fold boxes that will, after acceleration, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Acceleration Loop
2 Unfold solo boxes
3 repeat
4 Accelerate
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 13 / 17

Learning inside Acceleration

learning and folding of boxes in the acceleration loop

The Goal
Fold boxes that will, after acceleration, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Acceleration Loop
2 Unfold solo boxes
3 repeat
4 Accelerate
5 Fold
6 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 13 / 17

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree with root ptrs of any height

1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
DLS

D
LS

DLS

D
LS

DLS 1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Learning of Boxes: Example

circular-DLL-of
-trees-rootptr

1 Unfold solo boxes
2 repeat
3 Accelerate
4 Fold
5 until fixpoint

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 14 / 17

Experimental Results

implemented in Forester tool: verifies memory safety

comparison with Predator
▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 15 / 17

Experimental Results

implemented in Forester tool: verifies memory safety
comparison with Predator

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 15 / 17

Experimental Results

implemented in Forester tool: verifies memory safety
comparison with Predator

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 15 / 17

Conclusion

Shape analysis with forest automata:

fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Conclusion

Shape analysis with forest automata:
fully automated

very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework

Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool

successfully verified:
▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

a follow-up work:
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. To appear in Proc. of ATVA’13.

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 16 / 17

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 17 / 17

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 17 / 17

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Holı́k, Lengál, Rogalewicz, Šimáček, Vojnar (BUT)Shape Analysis with Forest Automata July 17, 2013 17 / 17

	Heap Representation
	Learning of Boxes

