Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata

Lukas Holik!2 Ondrej Lengal' Jifi Simagek' Tomas Vojnar’

"Brno University of Technology, Czech Republic
2Uppsala University, Sweden
SVERIMAG, UJF/CNRS/INPG, Giéres, France

October 13, 2011

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 1/24

Outline

Tree Automata

Downward Inclusion Checking

Semi-Symbolic Encoding of Non-Deterministic TA

Conclusion

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 2/24

Trees

Very popular in computer science:

m data structures, ./:\.

m computer network topologies,
m distributed protocaols, ...

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3/24

Trees

Very popular in computer science:

m data structures, ./:\.

m computer network topologies,
m distributed protocaols, ...

In formal verification:
m encoding of complex data structures

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3/24

Trees

Very popular in computer science:
m data structures,
m computer network topologies,
m distributed protocaols, ...

In formal verification:

m encoding of complex data structures
e e.g., doubly linked lists

dll
next, next next
L ko] L
prev prev

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata

October 13, 2011

3/24

Trees

Very popular in computer science:
m data structures, ./’ \
m computer network topologies,)lk).K
m distributed protocaols, ...

In formal verification:

m encoding of complex data structures
e e.g., doubly linked lists

dll
g
next, next next
L ko] L
prev prev

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3/24

Trees

Very popular in computer science:
m data structures, ./’ \
m computer network topologies,)lk).K
m distributed protocaols, ...

In formal verification:

m encoding of complex data structures
e e.g., doubly linked lists

dll
g
next, next next
L ko] L
prev prev

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 3/24

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,

F ...set of final states.

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata

A ... set of transitions in the form of p % (g, . ..

7qh)’

October 13, 2011

4/24

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof final states.

Example:
A = |
f
s —(r,q,r),
AN ONORO
I’—)(q,Q),
q-—=

) (& @ @ @

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4/24

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof final states.

Example:
A = |
s LN (r,q,r),
r-2+(q.q),
qg->
}

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4/24

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof final states.

Example:
A = |
s LN (r,q,r),
r-2(q.9),
q->
}

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4/24

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,
e A ...set of transitions in the form of p 2, (91,---,an),
e [...setof final states.

Example:
A = {
S —f> (r,q,r),
r-2+(q.q),
q->
}

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 4/24

Tree Automata

Tree Automata
m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ...,
m ...formal verification, decision procedures of some logics, ...

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 5/24

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ..

b}

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

5/24

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ..

b}

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation
e often advantageous to use non-deterministic tree automata,

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

5/24

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ..

"

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

e often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

5/24

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, .

-y

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

e often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

e even for operations such as language inclusion (ARTMC, .. .),

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

5/24

Tree Automata

Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, .

-y

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

e often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

e even for operations such as language inclusion (ARTMC, .. .),
m handling large alphabets (MSO, WSKS).

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

5/24

Approaches to Checking Tree Automata Inclusion

m Approximate

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

(under-approximation: g <p r = £(q) C L(r))

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

(under-approximation: g <p r = £(q) C L(r))

e upward simulation

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

(under-approximation: g <p r = £(q) C L(r))

e upward simulation

» not compatible with language inclusion,
> but can be used to speed up exact checking

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 6/24

Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..

1
2
3

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7/24

Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..
m ...but there are some highly efficient heuristics:

1
2
3

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7/24

Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..
m ...but there are some highly efficient heuristics:
e antichains'

1 M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.

3

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7/24

Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..
m ...but there are some highly efficient heuristics:

e antichains'
e antichains combined with simulation?:3

1 M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.
2L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS10.
3F’. Abdulla, Y.-F. Chen, L. Holik, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.
Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 7/24

Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8/24

Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Bottom-up determinise Ag — AB.
e Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8/24

Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Bottom-up determinise Ag — AB.
e Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

Complement A2 — AD.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8/24

Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Bottom-up determinise Ag — AB.
e Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

Complement A2 — AD.
Check Asn A3 = 0.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8/24

Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Bottom-up determinise Ag — AB. (exponential explosion!)
e Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

Complement A2 — AD.
Check Asn A3 = 0.

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 8/24

Upward Inclusion Checking

On-the-fly approach:

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.

Generate tuples (g1, ...,9qn) and (Ps, ..., Pn),
e where (g1, P1),...,(qn, Pn) € W.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.

Generate tuples (g1, ...,9qn) and (Ps, ..., Pn),
e where (g1, P1),...,(qn, Pn) € W.

Vf € T, generate (s, T), St. (G1,-...qn) —= 8, (P1,...,Py) - T.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.
Generate tuples (g1, ...,9qn) and (Ps, ..., Pn),
o where (g1, P1),...,(gn, Pn) € W.
Vf e X, generate (s, T), s.t. (g1,...,0n) s, (P1,...,Pn) L
If you encounter (f, R), where f € Fs, RN Fg = (), return false.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.
Generate tuples (g1, ...,9qn) and (Ps, ..., Pn),
o where (g1, P1),...,(gn, Pn) € W.
Vf e X, generate (s, T), s.t. (g1,...,0n) s, (P1,...,Pn) L
If you encounter (f, R), where f € Fs, RN Fg = (), return false.
A If no new pairs are found, return true.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 9/24

Upward Inclusion Checking

Optimisations:

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10/24

Upward Inclusion Checking

Optimisations:
use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10/24

Upward Inclusion Checking

Optimisations:
use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):

e if SC S andboth (g, S) and (g, S’) are in workset W,
e remove (q, S’) from workset W.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10/24

Upward Inclusion Checking

Optimisations:
use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):

e if SC S andboth (g, S) and (g, S’) are in workset W,
e remove (q, S’) from workset W.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10/24

Upward Inclusion Checking

Optimisations:
use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):

e if SC S andboth (g, S) and (g, S’) are in workset W,
e remove (q, S’) from workset W.

use simulation to further prune the searched space.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 10/24

Upward Inclusion Checking

Advantages:

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:
m Generating tuples is expensive. ®

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:
m Generating tuples is expensive. ®
m The counterexample may be at root .. .takes long to get there. ®

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:
m Generating tuples is expensive. ®
m The counterexample may be at root .. .takes long to get there. ®
m Upward simulation — hard to compute and too strong. ®

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:
m Generating tuples is expensive. ®
m The counterexample may be at root .. .takes long to get there. ®
m Upward simulation — hard to compute and too strong. ®
m Not compatible with downward simulation (easy & rich). ®

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 11/24

Downward Inclusion Checking

Downward Inclusion Checking

4

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12/24

Downward Inclusion Checking

Downward Inclusion Checking
m inspired by XML Schema containment checking?,

‘h. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.
Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12/24

Downward Inclusion Checking

Downward Inclusion Checking
m inspired by XML Schema containment checking?,
m does not follow the classic schema of inclusion algorithms,

‘h. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

12/24

Downward Inclusion Checking

Downward Inclusion Checking
m inspired by XML Schema containment checking?,
m does not follow the classic schema of inclusion algorithms,
m uses antichains and downward simulation.

‘h. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.
Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 12/24

Downward Inclusion Checking

As

Holik, Lengal, Simacek, Vojnar (BUT)

Ap

I
-l
~—
<
<
SN—r

I\

Inclusion Checking on Tree Automata October 13, 2011

13/24

Downward Inclusion Checking

As -AB
g—f>(v,v)
qg—(r,s) u-"s (w,w)
r-2 v -2,
s w2,
R 2
©» ©wW O
a a a b b

L£(q) C L(u) if and only if

L(r) x L(8) C (L(v) x L(v))U(L(w) x L(w))
(language inclusion of tuples!)

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 13/24

Checking language inclusion of tuples
Note that in general

(L£(v1)xL(v2))U(L(wa)x L(Wz)) 7 (L(v1)UL(wr))x (L(v2) L(W2))

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24

Checking language inclusion of tuples
Note that in general
(L(va)x L(v2))I(L(wr)x L(wz)) # (L(v4)IL(wr))x (L(v2)UL(Wz2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24

Checking language inclusion of tuples
Note that in general

(L(v1)x L(v2))I(L(wr)x L(W2)) # (L(v1)UL(Wr)) < (L(v2) IL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24

Checking language inclusion of tuples
Note that in general

(L(v1)x L(v2))I(L(wr)x L(W2)) # (L(v1)UL(Wr)) < (L(v2) IL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

(L(v1) x L(wv2)) U (L(w) x L(we)) =
(Lvi)xTg) N (TexL(v2)) U ((Lwi)xTs) N (TexL(we))) =

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24

Checking language inclusion of tuples
Note that in general

(L(v1)x L(v2))I(L(wr)x L(W2)) # (L(v1)UL(Wr)) < (L(v2) IL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over)

(L(v1) x L(wv2)) U (L(w) x L(we)) =
(Lvi)xTg) N (TexL(v2)) U ((Lwi)xTs) N (TexL(we))) =

Using distributive laws, this becomes

((E(V1)><Tz) U (,C(W1)><Tz)) N (([,(V~|)><Tz) U (TzXﬁ(Wg)))ﬂ
(TexL(wv2)) U (Lwi)xTx)) N ((TexL(vz)) U (TexL(w2)))

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24

Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)) N

((L(v1)xTx))
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(W)) N

((L(v1)xTx) 2)))
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U

...is equal to checking

((£(r) < L(s)) S (L(v)xTx) U (L£(w)xTx)) A
(L(r) x L(s)) S (L(v)xTs) U (TexL(nz))) A.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(W)) N

((L(v1)xTx) 2)))
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U

...is equal to checking

((L£(r)x L(s)) < (L(wv)xTs) U (L(wy)xTg)) A
- (ﬁ(V1)><Tz) U (TzXﬁ(Wg)))/\

Each clause can be checked separately ...

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)) N

((£(v1)xTx))
(ﬁ(W1)><Tz)) N ((TzXﬁ(Vg)) U (TzXﬁ(Wg)))

U
((TexL(w)) U

...is equal to checking

((L(r) x L(s)) S (L(vi)xTx) U (L(wq)xTx)) A
(L(r) x £(s)) C (L(v)xTs) U (TexL(wa))) A...

Each clause can be checked separately ...
...which is again checking inclusion of union of tuples, but now . ..

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)) N

((£(v1)xTx))
(ﬁ(W1)><Tz)) N ((TzXﬁ(Vg)) U (TzXﬁ(Wg)))

U
((TexL(w)) U

...is equal to checking

((L(r) x L(s)) S (L(vi)xTx) U (L(wq)xTx)) A
(L(r) x £(s)) C (L(v)xTs) U (TexL(wa))) A...

Each clause can be checked separately ...
...which is again checking inclusion of union of tuples, but now . ..
...each tuple has a non- Ty language on a single position.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples

L(r) x £(s) <
((,C(V1)><T):) U ([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)))ﬂ
((TXXE(VQ)) U (ﬁ(W1)><Tz)) N ((TzXﬁ(Vg)) U (TzXﬁ(Wg)))

...is equal to checking

((L(r) x L(s)) S (L(vi)xTx) U (L(wq)xTx)) A
(L(r) x £(s)) C (L(v)xTs) U (TexL(wa))) A...

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now . ..
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Checking language inclusion of tuples

L(r) x £(s) <
((,C(V1)><T):) U ([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)))ﬂ
((TXXE(VQ)) U (ﬁ(W1)><Tz)) N ((TzXﬁ(Vg)) U (TzXﬁ(Wg)))

...is equal to checking

((L(r) x L(s)) S (L(vi)xTx) U (L(wq)xTx)) A
(L(r) x £(s)) C (L(v)xTs) U (TexL(wa))) A...

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now . ..
...each tuple has a non- Ty language on a single position.

= Checking language inclusion can be done component-wise. =

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 15/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).
m Start the algorithm from (f, Fp) for each f € Fg.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

m Start the algorithm from (f, Fp) for each f € Fg.
m Alternating structure:

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

m Start the algorithm from (f, Fp) for each f € Fg.
m Alternating structure:
e for all clauses ...

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

m Start the algorithm from (f, Fp) for each f € Fg.
m Alternating structure:

o for all clauses ...
e exists a position such that inclusion holds.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

m Start the algorithm from (f, Fp) for each f € Fg.
m Alternating structure:

o for all clauses ...
e exists a position such that inclusion holds.

m Sooner or later, the DFS either

e reaches a leaf, or
e reaches a pair (gs, Pg) which is already in W.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 16/24

Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17/ 24

Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.
Further, NN can be maintained as an antichain w.r.t. D
e when S C §’, why store both (g, S) and (g, S')?
e when £(q) € L(S'), then surely £(q) € L(S).

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17/ 24

Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.
Further, NN can be maintained as an antichain w.r.t. D
e when S C §’, why store both (g, S) and (g, S')?
e when £(q) € L(S'), then surely £(q) € L(S).

Moreover, NN can be maintained w.r.t. downward simulation <p.
e g=pr = £L(q) C L(r)

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17/ 24

Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.

Further, NN can be maintained as an antichain w.r.t. D
e when S C §’, why store both (g, S) and (g, S')?
e when £(q) € L(S'), then surely £(q) € L(S).

Moreover, NN can be maintained w.r.t. downward simulation <p.
e q=pr = £L(q) € L(r)

Furthermore, workset can be also maintained w.r.t. <p.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17/ 24

Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.

Further, NN can be maintained as an antichain w.r.t. D
e when S C §’, why store both (g, S) and (g, S')?
e when £(q) € L(S'), then surely £(q) € L(S).

Moreover, NN can be maintained w.r.t. downward simulation <p.
e g=pr = £L(q) < L(r)

Furthermore, workset can be also maintained w.r.t. <p.

Even further, if 3s € S: g <p s, then surely £(q) C L(S).

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 17/24

Experiments

a) Comparison of methods (w/ simulation computation time).

Size 50-250 | 400-600

Pairs 323 64

Timeout 20s 60s || Size 50-250 | 400-600
Up 31.21% | 9.38% || Pairs 323 64
Up+s 0.00% | 0.00% | | Timeout 20s 60s
Down 53.50% | 39.06% || Up+s 81.82% | 20.31%
Down+s 15.29% | 51.56% | | Down+s 18.18% | 79.69%
Avg up 1.71 0.34 | | Avg up 1.33 9.92
Avg down 3.55 46.56 | | Avg down 3.60 | 2116.29

a) b)

b) Comparison of methods (w/o simulation computation time).

Holik, Lengal, Simadek, Vojnar (BUT)

Inclusion Checking on Tree Automata

October 13, 2011

18/24

Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
m FV of programs with complex dynamic data structures,
m decision procedures of some logics: WSKS, MSO.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 19/24

Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
m FV of programs with complex dynamic data structures,
m decision procedures of some logics: WSKS, MSO.

Current approach:

m use the MONA tree automata package (MTBDD-based)
m But only deterministic automata supported —
e often runs out of reasonable memory or time.

Holik, Lengal, Simadek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011

19/24

Dual representation

m Multi-terminal binary decision diagrams (MTBDDs)

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 20/24

Dual representation

m Multi-terminal binary decision diagrams (MTBDDs)
m Bottom-up: m Top-down:

(q‘la"'aqn)

~

M ' v \

o A A (RS

-

v 0

(). (). (uyy (e U
Bottom-up : inspired by MONA, but has sets of states in leaves.
Top-down : sets of state tuples in leaves.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 20/24

Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),

m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21/24

Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),
m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21/24

Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),
m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
m Use of CUDD to implement MTBDDs.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21/24

Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),
m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
m Use of CUDD to implement MTBDDs.

m ~ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 21/24

Conclusion

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22/24

Conclusion

m An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, ...

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22/24

Conclusion

m An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, ...

m ...that makes use of antichains and downward simulation.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22/24

Conclusion

m An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, ...

m ...that makes use of antichains and downward simulation.

m A new symbolic encoding of non-deterministic tree automata
proposed.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 22/24

Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23/24

Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).
m Replace CUDD with a more efficient MTBDD package.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23/24

Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).

m Replace CUDD with a more efficient MTBDD package.

m Improve the symbolic downward simulation algorithm.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23/24

Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).

m Replace CUDD with a more efficient MTBDD package.

m Improve the symbolic downward simulation algorithm.

m Create a tree automata package replacing MONA.

Holik, Lengal, Simagek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 23/24

Thank you for your attention.

Questions?

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 24 /24

	Tree Automata
	Downward Inclusion Checking
	Semi-Symbolic Encoding of Non-Deterministic TA
	Conclusion

