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Trees

Very popular in computer science:

m data structures, ./:\.

m computer network topologies,
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Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e Q...setof states,
e > ...finite alphabet of symbols with arity,

F ...set of final states.
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m extension of finite automaton to trees:
e Q...setof states,
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e A ...set of transitions in the form of p 2, (91,---,an),
e [ ...setof final states.

Example:
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Tree Automata

Tree Automata
m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ...,
m ...formal verification, decision procedures of some logics, ...
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Tree Automata

m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, .

-y

m ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

m often large due to determinisation

e often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,

e even for operations such as language inclusion (ARTMC, .. .),
m handling large alphabets (MSO, WSKS).
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Approaches to Checking Tree Automata Inclusion

m Approximate
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Approaches to Checking Tree Automata Inclusion

m Approximate
e downward simulation: ¢ <pr =

>vf€)2:q—’>(q1,...,q,,) = ré(n,...,rn),w <i<n:q=pt

(under-approximation: g <p r = £(q) C L(r))

e upward simulation

» not compatible with language inclusion,
> but can be used to speed up exact checking
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Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..

1
2
3
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Approaches to Checking Tree Automata Inclusion

Exact: EXPTIME-complete . ..
m ...but there are some highly efficient heuristics:

e antichains'
e antichains combined with simulation?:3

1 M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV’06.
2L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS10.
3F’. Abdulla, Y.-F. Chen, L. Holik, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS’10.
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Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:
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Inclusion Checking

Textbook algorithm for checking £(Ag) C £(Ag) on TA:

Bottom-up determinise Ag — AB. (exponential explosion!)
e Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

Complement A2 — AD.
Check Asn A3 = 0.
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Upward Inclusion Checking

On-the-fly approach:
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Vf € T, generate (s, T), St. (G1,-...qn) —= 8, (P1,...,Py) - T.
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Upward Inclusion Checking

On-the-fly approach:
Traverse Ag and Ag in parallel, bottom-up.
Maintain a workset W of pairs (q, P), where g € Qs, P C Q.
Generate tuples (g1, ...,9qn) and (Ps, ..., Pn),
o where (g1, P1),...,(gn, Pn) € W.
Vf e X, generate (s, T), s.t. (g1,...,0n) s, (P1,...,Pn) L
If you encounter (f, R), where f € Fs, RN Fg = (), return false.
A If no new pairs are found, return true.
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Upward Inclusion Checking
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Upward Inclusion Checking

Optimisations:
use antichains: maintain only such pairs which are sufficient to
encounter a counterexample (if it exists):

e if SC S andboth (g, S) and (g, S’) are in workset W,
e remove (q, S’) from workset W.

use simulation to further prune the searched space.
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Advantages:
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Upward Inclusion Checking

Advantages:
m Straightforward extension of the antichain algorithm for FA. ©

Disadvantages:
m Generating tuples is expensive. ®
m The counterexample may be at root .. .takes long to get there. ®
m Upward simulation — hard to compute and too strong. ®
m Not compatible with downward simulation (easy & rich). ®
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Downward Inclusion Checking

Downward Inclusion Checking

4
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Downward Inclusion Checking
m inspired by XML Schema containment checking?,

‘h. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.
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Downward Inclusion Checking

Downward Inclusion Checking
m inspired by XML Schema containment checking?,
m does not follow the classic schema of inclusion algorithms,
m uses antichains and downward simulation.

‘h. Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.
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Downward Inclusion Checking

As
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Downward Inclusion Checking

As -AB
g—f>(v,v)
qg—(r,s) u-"s (w,w)
r-2 v -2,
s w2,
R 2
©» ©wW O
a a a b b

L£(q) C L(u) if and only if

L(r) x L(8) C (L(v) x L(v))U(L(w) x L(w))
(language inclusion of tuples!)
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Checking language inclusion of tuples
Note that in general

(L£(v1)xL(v2))U(L(wa)x L(Wz)) 7 (L(v1)UL(wr))x (L(v2) L(W2))

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 14/24



Checking language inclusion of tuples
Note that in general
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Note that in general

(L(v1)x L(v2))I(L(wr)x L(W2)) # (L(v1)UL(Wr)) < (L(v2) IL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over )

(L(v1) x L(wv2)) U (L(w) x L(we)) =
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Checking language inclusion of tuples
Note that in general

(L(v1)x L(v2))I(L(wr)x L(W2)) # (L(v1)UL(Wr)) < (L(v2) IL(W2))
However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(lettd = Tx ...all trees over )

(L(v1) x L(wv2)) U (L(w) x L(we)) =
(Lvi)xTg) N (TexL(v2)) U ((Lwi)xTs) N (TexL(we))) =

Using distributive laws, this becomes

((E(V1)><Tz) U (,C(W1)><Tz)) N (([,(V~|)><Tz) U (TzXﬁ(Wg)))ﬂ
(TexL(wv2)) U (Lwi)xTx)) N ((TexL(vz)) U (TexL(w2)))
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Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)) N

((L(v1)xTx) )
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U
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Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(W )) N

((L(v1)xTx) 2)))
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U

...is equal to checking

((£(r) < L(s)) S (L(v)xTx) U (L£(w)xTx)) A
(L(r) x L(s)) S (L(v)xTs) U (TexL(nz))) A.
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Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(W )) N

((L(v1)xTx) 2)))
(L(w1)xTx)) N (TexL(v2)) U (TexL(wz)))

U
((TexL(w)) U

...is equal to checking

((L£(r)x L(s)) < (L(wv)xTs) U (L(wy)xTg)) A
- (ﬁ(V1)><Tz) U (TzXﬁ(Wg)))/\

Each clause can be checked separately ...
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Checking language inclusion of tuples
L(r) x L(s) C

([,(W1)><T):)) N ((,C(V1)><T):) U (T):X,C(Wg)) N

((£(v1)xTx) )
(ﬁ(W1)><Tz)) N ((TzXﬁ(Vg)) U (TzXﬁ(Wg)))

U
((TexL(w)) U

...is equal to checking

((L(r) x L(s)) S (L(vi)xTx) U (L(wq)xTx)) A
(L(r) x £(s)) C (L(v)xTs) U (TexL(wa))) A...

Each clause can be checked separately ...
...which is again checking inclusion of union of tuples, but now . ..
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Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).
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Basic Downward Inclusion Checking Algorithm

m DFS, maintain a workset W of product states (gs, Pg).

m Start the algorithm from (f, Fp) for each f € Fg.
m Alternating structure:

o for all clauses ...
e exists a position such that inclusion holds.

m Sooner or later, the DFS either

e reaches a leaf, or
e reaches a pair (gs, Pg) which is already in W.
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Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.
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Optimised Downward Inclusion Checking Algorithm

Optimisations:
It is possible to maintain a cache NN of pairs (gs, Pg) for which
L£(qs) € L(Pg) has been shown and prune the search.

Further, NN can be maintained as an antichain w.r.t. D
e when S C §’, why store both (g, S) and (g, S')?
e when £(q) € L(S'), then surely £(q) € L(S).

Moreover, NN can be maintained w.r.t. downward simulation <p.
e g=pr = £L(q) < L(r)

Furthermore, workset can be also maintained w.r.t. <p.

Even further, if 3s € S: g <p s, then surely £(q) C L(S).
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Experiments

a) Comparison of methods (w/ simulation computation time).

Size 50-250 | 400-600

Pairs 323 64

Timeout 20s 60s || Size 50-250 | 400-600
Up 31.21% | 9.38% || Pairs 323 64
Up+s 0.00% | 0.00% | | Timeout 20s 60s
Down 53.50% | 39.06% || Up+s 81.82% | 20.31%
Down+s 15.29% | 51.56% | | Down+s 18.18% | 79.69%
Avg up 1.71 0.34 | | Avg up 1.33 9.92
Avg down 3.55 46.56 | | Avg down 3.60 | 2116.29

a) b)

b) Comparison of methods (w/o simulation computation time).
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Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
m FV of programs with complex dynamic data structures,
m decision procedures of some logics: WSKS, MSO.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 19/24



Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:
m FV of programs with complex dynamic data structures,
m decision procedures of some logics: WSKS, MSO.

Current approach:

m use the MONA tree automata package (MTBDD-based)
m But only deterministic automata supported —
e often runs out of reasonable memory or time.
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Dual representation

m Multi-terminal binary decision diagrams (MTBDDs)
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Dual representation

m Multi-terminal binary decision diagrams (MTBDDs)
m Bottom-up: m Top-down:

(q‘la"'aqn)

~

M ' v \

o A A (RS

-

v 0

(). (). (uyy (e U
Bottom-up : inspired by MONA, but has sets of states in leaves.
Top-down : sets of state tuples in leaves.

Holik, Lengal, Simacek, Vojnar (BUT) Inclusion Checking on Tree Automata October 13, 2011 20/24



Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),

m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.
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Semi-Symbolic Encoding of Non-Deterministic TA

Algorithms for
E union,
m intersection,
m language inclusion checking (both upward and downward),
m downward simulation computation.
e based on M. Henzinger, T. Henzinger, and P. Kopke’s algorithm.

Experiments:
m Use of CUDD to implement MTBDDs.

m ~ 8500 times faster downward inclusion checking than explicit
representation for tested automata with large alphabets.
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Conclusion
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Conclusion

m An alternative downward approach to checking language inclusion
of non-deterministic tree automata proposed, ...

m ...that makes use of antichains and downward simulation.

m A new symbolic encoding of non-deterministic tree automata
proposed.
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Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).
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Future work

m Optimise the downward inclusion to also cache pairs (q, S), such
that £(q) € L(S).

m Replace CUDD with a more efficient MTBDD package.

m Improve the symbolic downward simulation algorithm.

m Create a tree automata package replacing MONA.
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Thank you for your attention.

Questions?
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