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String Constraints – Motivation

SMT solving
I FO logic fragments combining various theories
I integers, reals, arrays, strings

Analysis and verification of programs
I symbolic execution; concolic testing
I vulnerabilities in web applications (XSS)

• bad strings manipulation
I test-case generation
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String Constraints

Equations containing string variables from X ranging over Σ∗

Syntax ΣX = X ∪ Σ

(equation) ψ ::= t` = tr where t`, tr ∈ Σ∗X

(string constraint) ϕ ::= ϕ ∧ϕ | ϕ ∨ϕ | ¬ϕ | ψ

Assignment I : X→ Σ∗; lifted to strings I(ε) = ε, I(a) = a,
I(xw) = I(x)I(w) for a ∈ Σ, x ∈ ΣX, w ∈ Σ∗X
An assignment I is a model of ϕ, I � ϕ, if I satisfies ϕ
I I � t` = tr iff I(t`) = I(tr )
I I � ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,¬ϕ1 defined as usual

ϕ is satisfiable if it has a model

Example
xx = yaz ∧ aza = y  unsatisfiable (incompatible lengths)
ax = yy  satisfiable with e.g. I(x) = waw , I(y) = aw for w ∈ Σ∗
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Nielsen Transformation

Conjunction of word equations ϕ; is ϕ satisfiable?

Building of a proof graph using rewriting rules

αu = αv
u = v

(trim)
xu = v

u[x 7→ ε] = v [x 7→ ε]
(x ↪→ ε)

xu = αv
x(u[x 7→ αx ]) = v [x 7→ αx ]

(x ↪→ αx)

I where x ∈ X, α ∈ ΣX, and u, v ∈ Σ∗X

Starting from the node ϕ
ϕ is satisfiable iff one of the leaf nodes is trivially valid, i.e, a node
ε = ε ∧ · · · ∧ ε = ε is reachable from ϕ
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Nielsen Transformation

Quadratic equations: at most two occurences of each variable

Example: X = {x , y},Σ = {a,b}
I xay = xb ∧ y = b  quadratic
I xay = xb ∧ y = bx  not quadratic

Lemma (Makanin’77)
Nielsen transformation is sound. Moreover, it is complete when the
systems of word equations is quadratic.
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Nielsen Transformation Cont.

Example: Consider an equation ψ : xy = ax (implicit trim)

xy = ax

y = a

ε = a y = ε

ε = ε

x ↪→ ax

x ↪→ ε

y ↪→ ε y ↪→ ay

y ↪→ ε

Model: {x 7→ an, y 7→ a}
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Proof Graphs

Consider the equation xz = ab ∧ wabyx = awbzv
Partial Nielsen proof graph (implicit trim; omitted contradictions)

xz = ab ∧
wabyx = awbzv

xz = b ∧
wabyax = awbzv

z = ab ∧
waby = awbzv

xz = ε ∧
wabyabx = awbzv

z = b ∧
wabya = awbzv

ε = ε ∧
wabyab = awbv

ε = ε ∧
wabya = awbbv ∧

ε = ε ∧
waby = awbabv ∧

x ↪→ ax

x ↪→ ε

x ↪→ bx

x ↪→ ε

z ↪→ az; z ↪→ bz; z ↪→ ε

z ↪→ ε; x ↪→ ε

z ↪→ bz; z ↪→ ε

A lot of nodes have shared parts. Could we do it better?
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Towards an Efficient Handling of the Proof Graph

A string equation ψ : t` = tr can be seen as a pair (t`, tr )

Nielsen rules are then word operations
I trim  τtrim (trim as much as possible)
I x ↪→ ε  τx 7→ε
I x ↪→ αx  τx 7→αx

Example: Consider an equation ψ : zb = ua with X = {z,u}
I τz 7→uz(zb,ua) = {(uzb,ua)}
I τu 7→ε(zb,ua) = {(zb,a)}

Apply multiple word operations on a set of equations at once
I 〈v 7→ αv〉 =

⋃
x∈X,α∈ΣX

(τtrim ◦ τx 7→αx )
I 〈v 7→ ε〉 =

⋃
x∈X(τtrim ◦ τx 7→ε)

Example: Consider an equation ψ : xay = yx with X = {x , y}
I 〈v 7→ αv〉(xay , yx) = {(xay , yx), (axy , yx)} (τx 7→yx , τy 7→xy + τtrim)
I 〈v 7→ ε〉(xay , yx) = {(ay , y), (a, ε)} (τx 7→ε, τy 7→ε + τtrim)
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Towards an Efficient Handling of the Proof Graph Cont.

Equation ψ : t` = tr
BFS strategy of the proof graph generation
I initial node I = {(t`, tr )}
I transformation function T = 〈v 7→ αv〉 ∪ 〈v 7→ ε〉
 single step in a proof graph for all nodes

I destination D = {(ε, ε)}

I Compute T 0(I), T 1(I), T 2(I), . . . until
• (ε, ε) ∈ T n(I)  ψ is satisfiable
• ⋃

0≤i<n T
i(I) ⊇ T n(I)  ψ is unsatisfiable

I Regular model checking framework
• verification of systems; can we reach a bad state?
• ∃n ∈ N : T n(I) ∩ Bad 6= ∅
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Symbolic Encoding

Encoding ensuring regular languages and rational relations

Encoding of a string equation ψ : a1 . . . an = b1 . . . bm (n ≥ m)

enc(ψ) =
(a1

b1

)(a2
b2

)
. . .
(am

bm

)(am+1
�

)
. . .
(an

�

)(
�

�

)∗
I Example: Equations

wab yab = awb v ,
wab ya = awb bv ,
wab y = awb abv  repr.

by a finite automaton A

(w
a

) (a
w

) (b
b

) (y
v

)(y
b

)
(y

a

)

(a
�

) (b
�

)
(a

v

)
(
�

b

) (
�

v

)

(
�

�

)

(
�

�

)
(
�

�

)A:

Encoding can be straightforwardly extended to relations
I T ≤i

v 7→αv = enc(〈v 7→ αv〉i ) rewrites at most i occurrences
I Example: ψ : xb = ab, x ↪→ ε transformation of ψ is encoded as{((x

a

)(b
b

)(
�

�

)k
,
(b

a

)(
�

b

)(
�

�

)`) ∣∣ k , ` ∈ N
}

The relations T ≤i
v 7→αv and T ≤i

v 7→ε are rational.
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(w
a

) (a
w

) (b
b

) (y
v

)(y
b

)
(y

a

)

(a
�

) (b
�

)
(a

v

)
(
�

b

) (
�

v

)

(
�

�

)

(
�

�

)
(
�

�

)A:

Encoding can be straightforwardly extended to relations
I T ≤i

v 7→αv = enc(〈v 7→ αv〉i ) rewrites at most i occurrences
I Example: ψ : xb = ab, x ↪→ ε transformation of ψ is encoded as{((x

a

)(b
b

)(
�

�

)k
,
(b

a

)(
�

b

)(
�

�

)`) ∣∣ k , ` ∈ N
}

The relations T ≤i
v 7→αv and T ≤i

v 7→ε are rational.
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Symbolic Algorithm

Satisfiability checking of a quadratic equation ψ

Regular model checking framework
I Tψ = T ≤2

v 7→αv ∪ T ≤2
v 7→ε  rational language

I Iψ = enc(ψ)  regular language
I Dψ =

(
�

�

)∗
 regular language

Efficiently repr. by automata and length-preserving transducers
Example: ψ : xbyy = aabb; part of T ≤1

v 7→ε for X = {x , y},Σ = {a,b}
(a lot of transitions and states are omitted)(x

a

)(b
a

)(y
b

)(y
b

)
 (b

a

)(y
a

)(y
b

)(
�

b

) 〈〉 〈a〉 〈b〉

(
�

�

)
/
(
�

�

) (b
a

)
/
(b

a

) (y
b

)
/
(y

b

)
(x

a

)
/ε

(y
b

)
/
(y

a

)
(
�

�

)
/
(
�

b

)
Sound; complete for quadratic equations
Model obtained by a backward run and computing preimages
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General String Constraints

Conjunction of quadratic equations Ψ = ψ1 ∧ · · · ∧ ψn

Delimiter dividing encoded equations
enc(Ψ) = enc(ψ1).{

(#
#

)
} . . . {

(#
#

)
}.enc(ψn)

Modify T ≤2
v 7→ε and T ≤2

v 7→αv accordingly
Sound and complete

Example:
I xay = ya ∧ xb = z ∧ z = ba  quadratic
I xay = ya ∧ xb = z ∧ z = bx  cubic (3 occurrences of x)

Conjunction of general equations Ψ

Transformation of Ψ into equisatisfiable cubic system (using fresh
variables)
Integrate this transformation into T ≤3

v 7→αv and T ≤3
v 7→ε

Sound but incomplete

Chen, Havlena, Lengál, Turrini A Symbolic Algorithm for String Solving APLAS’20 12 / 17



General String Constraints

Conjunction of quadratic equations Ψ = ψ1 ∧ · · · ∧ ψn

Delimiter dividing encoded equations
enc(Ψ) = enc(ψ1).{

(#
#

)
} . . . {

(#
#

)
}.enc(ψn)

Modify T ≤2
v 7→ε and T ≤2

v 7→αv accordingly
Sound and complete

Example:
I xay = ya ∧ xb = z ∧ z = ba  quadratic
I xay = ya ∧ xb = z ∧ z = bx  cubic (3 occurrences of x)

Conjunction of general equations Ψ

Transformation of Ψ into equisatisfiable cubic system (using fresh
variables)
Integrate this transformation into T ≤3

v 7→αv and T ≤3
v 7→ε

Sound but incomplete

Chen, Havlena, Lengál, Turrini A Symbolic Algorithm for String Solving APLAS’20 12 / 17



General String Constraints Cont.

Boolean combination of equations Ψ

Inequalities: t` 6= tr ; remove in a standard way using ∧,∨
I
∨

c∈Σ(t` = tr ·cx∨t` ·cx = tr )∨
∨

c1,c2∈Σ,c1 6=c2
(t` = x3c1x1∧tr = x3c2x2)

Disjunction of equalities ∆ = ψ1 ∨ · · · ∨ ψn
I enc(∆) =

⋃
1≤i≤n enc(ψi )

1 Remove inequalities from Ψ

2 Convert to CNF Ψ′ = ∆1 ∧ · · · ∧∆k
I No Tseitin introduces negations

3 encode(Ψ′) = enc(∆1).{
(#

#

)
} . . . {

(#
#

)
}.enc(∆n)

Sound but incomplete
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Implementation

Transducer Tψ  branches for each choice of x and α
 huge transducer (|Unicode| ≥ 106)

I finite-alphabet register transducers
I choice of x and α stored in registers, processed symbolically

I Example: Part of T ≤1
x 7→ε. Input variables: α, β, registers: r1

〈〉 〈a〉 〈b〉

(
�

�

)
/
(
�

�

) (b
a

)
/
(b

a

) (y
b

)
/
(y

b

)
(x

a

)
/ε

(y
b

)
/
(y

a

)
(
�

�

)
/
(
�

b

)
〈〉 〈r1〉

(
�

�

)
/
(
�

�

)
;>; noop

(
α
β

)
/
(
α
r1

)
;>; r1 ← β(

α
β

)
/ε;α = x ; r1 ← β

(
α
β

)
/
(
�

r1

)
;α = β = �; noop

Encoded proof graph represented by deterministic finite automata
I eager minimization
I on-the-fly language inclusion checking
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Experimental Evaluation

1 Kepler22 benchmark [LeHe’18]
I 600 hand-crafted hard quadratic equations
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Benchmarks

Ti
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e
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CVC4

RETRO

Z3

I Z3: 119 CVC4: 266 RETRO: 443 (TO 20 sec)
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Experimental Evaluation Cont.

2 Conjunctions extracted from 967 difficult instances of PYEX
I symbolic execution of Python programs
I leads to 20,020 conjunctions of equations

I Z3: 16,788 CVC4: 19,823 RETRO: 16,921 (TO 20 sec)
I orthogonal approach: RETRO solved 82% instances where Z3

failed and 54% instances where CVC4 failed
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Conclusion

RMC framework for solving of word equations
I efficiently implemented by register automata

Future work
I extensions with efficient handling of length and regular constraints
I encoding of Makanin’s algorithm (sound and complete for arbitrary

equations)

THANK YOU!

Chen, Havlena, Lengál, Turrini A Symbolic Algorithm for String Solving APLAS’20 17 / 17



Conclusion

RMC framework for solving of word equations
I efficiently implemented by register automata

Future work
I extensions with efficient handling of length and regular constraints
I encoding of Makanin’s algorithm (sound and complete for arbitrary

equations)

THANK YOU!

Chen, Havlena, Lengál, Turrini A Symbolic Algorithm for String Solving APLAS’20 17 / 17


