A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving

Yu-Fang Chen ¹ Vojtěch Havlena ² Ondřej Lengál ² Andrea Turrini ³

Academia Sinica. Taiwan

Brno University of Technology, Czech Republic

Institute of Software, Chinese Academy of Sciences, China

30 November 2020 (APLAS'20)

String Constraints – Motivation

- SMT solving
 - FO logic fragments combining various theories
 - ▶ integers, reals, arrays, strings

String Constraints – Motivation

- SMT solving
 - FO logic fragments combining various theories
 - ▶ integers, reals, arrays, strings
- Analysis and verification of programs
 - symbolic execution; concolic testing
 - vulnerabilities in web applications (XSS)
 - bad strings manipulation
 - test-case generation

String Constraints

- Equations containing string variables from X ranging over Σ*
- Syntax $\Sigma_{\mathbb{X}} = \mathbb{X} \cup \Sigma$

$$\begin{array}{ll} \text{(equation)} & \psi ::= t_\ell = t_r & \text{where } t_\ell, t_r \in \Sigma_{\mathbb{X}}^* \\ \text{(string constraint)} & \varphi ::= \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid \psi \end{array}$$

String Constraints

- Equations containing string variables from X ranging over Σ*
- Syntax

$$\Sigma_{\mathbb{X}} = \mathbb{X} \cup \Sigma$$

$$\begin{array}{ll} \text{(equation)} & \psi ::= t_\ell = t_r & \text{where } t_\ell, t_r \in \Sigma_{\mathbb{X}}^* \\ \text{(string constraint)} & \varphi ::= \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid \psi \end{array}$$

- Assignment $I: \mathbb{X} \to \Sigma^*$; lifted to strings $I(\epsilon) = \epsilon$, I(a) = a, I(xw) = I(x)I(w) for $a \in \Sigma$, $x \in \Sigma_{\mathbb{X}}$, $w \in \Sigma_{\mathbb{X}}^*$
- An assignment *I* is a model of φ , $I \models \varphi$, if *I* satisfies φ
 - $I \vDash t_{\ell} = t_r \text{ iff } I(t_{\ell}) = I(t_r)$
 - ► $I \vDash \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \neg \varphi_1$ defined as usual
- $lue{\varphi}$ is satisfiable if it has a model

String Constraints

- Equations containing string variables from X ranging over Σ*
- Syntax

$$\Sigma_{\mathbb{X}} = \mathbb{X} \cup \Sigma$$

$$\begin{array}{ll} \text{(equation)} & \psi ::= t_\ell = t_r & \text{where } t_\ell, t_r \in \Sigma_{\mathbb{X}}^* \\ \text{(string constraint)} & \varphi ::= \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid \psi \end{array}$$

- Assignment $I: \mathbb{X} \to \Sigma^*$; lifted to strings $I(\epsilon) = \epsilon$, I(a) = a, I(xw) = I(x)I(w) for $a \in \Sigma$, $x \in \Sigma_{\mathbb{X}}$, $w \in \Sigma_{\mathbb{X}}^*$
- An assignment I is a model of φ , $I \models \varphi$, if I satisfies φ
 - $I \vDash t_{\ell} = t_r \text{ iff } I(t_{\ell}) = I(t_r)$
 - ► $I \vDash \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \neg \varphi_1$ defined as usual
- $lue{\varphi}$ is satisfiable if it has a model

Example

- $xx = yaz \land aza = y \rightsquigarrow unsatisfiable$
- (incompatible lengths)
- **a** $x = yy \rightsquigarrow \text{satisfiable}$ with e.g. I(x) = waw, I(y) = aw for $w \in \Sigma^*$

■ Conjunction of word equations φ ; is φ satisfiable?

- Conjunction of word equations φ ; is φ satisfiable?
- Building of a proof graph using rewriting rules

$$\frac{\alpha u = \alpha v}{u = v} \text{ (trim)} \qquad \frac{xu = v}{u[x \mapsto \epsilon] = v[x \mapsto \epsilon]} (x \hookrightarrow \epsilon)$$

$$\frac{xu = \alpha v}{x(u[x \mapsto \alpha x]) = v[x \mapsto \alpha x]} (x \hookrightarrow \alpha x)$$

▶ where $x \in X$, $\alpha \in \Sigma_X$, and $u, v \in \Sigma_X^*$

- Conjunction of word equations φ ; is φ satisfiable?
- Building of a proof graph using rewriting rules

$$\frac{\alpha u = \alpha v}{u = v} \text{ (trim)} \qquad \frac{xu = v}{u[x \mapsto \epsilon] = v[x \mapsto \epsilon]} (x \hookrightarrow \epsilon)$$

$$\frac{xu = \alpha v}{x(u[x \mapsto \alpha x]) = v[x \mapsto \alpha x]} (x \hookrightarrow \alpha x)$$

- ▶ where $x \in X$, $\alpha \in \Sigma_X$, and $u, v \in \Sigma_X^*$
- **Starting** from the node φ
- φ is satisfiable iff one of the leaf nodes is trivially valid, i.e, a node $\epsilon = \epsilon \wedge \cdots \wedge \epsilon = \epsilon$ is reachable from φ

- Quadratic equations: at most two occurences of each variable
- **Example:** $\mathbb{X} = \{x, y\}, \Sigma = \{a, b\}$
 - $ightharpoonup xay = xb \land y = b \quad \leadsto \quad \text{quadratic}$
 - ▶ $xay = xb \land y = bx$ \leadsto not quadratic

Lemma (Makanin'77)

Nielsen transformation is sound. Moreover, it is complete when the systems of word equations is quadratic.

Nielsen Transformation Cont.

Example: Consider an equation $\psi : xy = ax$

(implicit trim)

Nielsen Transformation Cont.

Example: Consider an equation $\psi : xy = ax$

(implicit trim)

■ Model: $\{x \mapsto a^n, y \mapsto a\}$

Proof Graphs

- Consider the equation $xz = ab \land wabyx = awbzv$
- Partial Nielsen proof graph (implicit trim; omitted contradictions)

Proof Graphs

- Consider the equation $xz = ab \land wabyx = awbzv$
- Partial Nielsen proof graph (implicit trim; omitted contradictions)

A lot of nodes have shared parts. Could we do it better?

■ A string equation $\psi : t_{\ell} = t_r$ can be seen as a pair (t_{ℓ}, t_r)

- A string equation $\psi : t_{\ell} = t_r$ can be seen as a pair (t_{ℓ}, t_r)
- Nielsen rules are then word operations

```
ightharpoonup trim 
ightharpoonup 	au trim as much as possible)
```

 $\begin{array}{ccccc} & & X \hookrightarrow \epsilon & & \leadsto & \tau_{X \mapsto \epsilon} \\ & & X \hookrightarrow \alpha X & & \leadsto & \tau_{X \mapsto \alpha X} \end{array}$

- A string equation $\psi : t_{\ell} = t_r$ can be seen as a pair (t_{ℓ}, t_r)
- Nielsen rules are then word operations

```
▶ trim \rightsquigarrow \tau_{trim} (trim as much as possible)

▶ X \hookrightarrow \epsilon \rightsquigarrow \tau_{X \mapsto \epsilon}

▶ X \hookrightarrow \alpha X \rightsquigarrow \tau_{Y \mapsto \alpha Y}
```

Example: Consider an equation $\psi : zb = ua$ with $\mathbb{X} = \{z, u\}$

```
 \qquad \qquad \tau_{z\mapsto uz}(zb,ua)=\{(uzb,ua)\}
```

$$ightharpoonup au_{u\mapsto\epsilon}(zb,ua)=\{(zb,a)\}$$

- A string equation $\psi : t_{\ell} = t_r$ can be seen as a pair (t_{ℓ}, t_r)
- Nielsen rules are then word operations

```
\begin{array}{lll} \blacktriangleright & trim & \leadsto & \tau_{trim} \\ \blacktriangleright & \mathsf{X} \hookrightarrow \epsilon & \leadsto & \tau_{\mathsf{X} \mapsto \epsilon} \end{array} \tag{trim as much as possible}
```

- $X \hookrightarrow \alpha X \quad \rightsquigarrow \quad \tau_{X \mapsto \alpha X}$
- **Example:** Consider an equation $\psi : zb = ua$ with $\mathbb{X} = \{z, u\}$
 - $\tau_{z\mapsto uz}(zb,ua) = \{(uzb,ua)\}$
- Apply multiple word operations on a set of equations at once

- A string equation $\psi : t_{\ell} = t_r$ can be seen as a pair (t_{ℓ}, t_r)
- Nielsen rules are then word operations

- $ightharpoonup x \hookrightarrow \alpha x \quad \leadsto \quad \tau_{x \mapsto \alpha x}$
- **Example:** Consider an equation $\psi : zb = ua$ with $\mathbb{X} = \{z, u\}$
 - $\tau_{z\mapsto uz}(zb, ua) = \{(uzb, ua)\}$
 - $\tau_{u\mapsto\epsilon}(zb,ua)=\{(zb,a)\}$
- Apply multiple word operations on a set of equations at once
- **Example:** Consider an equation ψ : xay = yx with $\mathbb{X} = \{x, y\}$

 - $\langle v \mapsto \epsilon \rangle (xay, yx) = \{(ay, y), (a, \epsilon)\}$ $(\tau_{x \mapsto \epsilon}, \tau_{y \mapsto \epsilon} + \tau_{trim})$

- Equation $\psi : t_{\ell} = t_r$
- BFS strategy of the proof graph generation
 - ▶ initial node $\mathcal{I} = \{(t_\ell, t_r)\}$
 - ▶ transformation function $\mathcal{T} = \langle v \mapsto \alpha v \rangle \cup \langle v \mapsto \epsilon \rangle$ \rightsquigarrow single step in a proof graph for all nodes
 - ▶ destination $\mathcal{D} = \{(\epsilon, \epsilon)\}$

- Equation $\psi : t_{\ell} = t_r$
- BFS strategy of the proof graph generation
 - ▶ initial node $\mathcal{I} = \{(t_{\ell}, t_r)\}$
 - ▶ transformation function $\mathcal{T} = \langle v \mapsto \alpha v \rangle \cup \langle v \mapsto \epsilon \rangle$ \rightsquigarrow single step in a proof graph for all nodes
 - destination $\mathcal{D} = \{(\epsilon, \epsilon)\}$
 - ▶ Compute $\mathcal{T}^0(\mathcal{I}), \mathcal{T}^1(\mathcal{I}), \mathcal{T}^2(\mathcal{I}), \dots$ until
 - $(\epsilon, \epsilon) \in \mathcal{T}^n(\mathcal{I}) \quad \leadsto \quad \psi \text{ is satisfiable}$
 - $\bigcup_{0 < i < n} \mathcal{T}^i(\mathcal{I}) \supseteq \mathcal{T}^n(\mathcal{I}) \quad \leadsto \quad \psi \text{ is unsatisfiable}$

- Equation $\psi : t_{\ell} = t_r$
- BFS strategy of the proof graph generation
 - ▶ initial node $\mathcal{I} = \{(t_\ell, t_r)\}$
 - ▶ transformation function $\mathcal{T} = \langle v \mapsto \alpha v \rangle \cup \langle v \mapsto \epsilon \rangle$ \rightsquigarrow single step in a proof graph for all nodes
 - destination $\mathcal{D} = \{(\epsilon, \epsilon)\}$
 - ▶ Compute $\mathcal{T}^0(\mathcal{I}), \mathcal{T}^1(\mathcal{I}), \mathcal{T}^2(\mathcal{I}), \dots$ until
 - $(\epsilon, \epsilon) \in \mathcal{T}^n(\mathcal{I}) \quad \leadsto \quad \psi \text{ is satisfiable}$
 - $\bigcup_{0 < i < n} \mathcal{T}^i(\mathcal{I}) \supseteq \mathcal{T}^n(\mathcal{I}) \quad \leadsto \quad \psi \text{ is unsatisfiable}$
 - Regular model checking framework
 - verification of systems; can we reach a bad state?
 - $\exists n \in \mathbb{N} : \mathcal{T}^n(\mathcal{I}) \cap Bad \neq \emptyset$

Encoding ensuring regular languages and rational relations

- Encoding ensuring regular languages and rational relations
- Encoding of a string equation $\psi : a_1 \dots a_n = b_1 \dots b_m$ $(n \ge m)$

$$\textit{enc}(\psi) = \left(egin{smallmatrix} \mathtt{a}_1 \\ \mathtt{b}_1 \end{smallmatrix} \right) \left(egin{smallmatrix} \mathtt{a}_2 \\ \mathtt{b}_2 \end{smallmatrix} \right) \ldots \left(egin{smallmatrix} \mathtt{a}_m \\ \mathtt{b}_m \end{smallmatrix} \right) \left(egin{smallmatrix} \mathtt{a}_{m+1} \\ \square \end{smallmatrix} \right) \ldots \left(egin{smallmatrix} \mathtt{a}_n \\ \square \end{smallmatrix} \right)^*$$

- Encoding ensuring regular languages and rational relations
- Encoding of a string equation $\psi : a_1 \dots a_n = b_1 \dots b_m$ $(n \ge m)$

$$\textit{enc}(\psi) = \left(egin{actual}{c} a_1 \\ b_1 \end{array} \right) \left(egin{actual}{c} a_2 \\ b_2 \end{array} \right) \ldots \left(egin{actual}{c} a_m \\ b_m \end{array} \right) \left(egin{actual}{c} a_{m+1} \\ \Box \end{array} \right) \ldots \left(egin{actual}{c} a_n \\ \Box \end{array} \right)^*$$

Example: Equations

wab yab = awb v,

wab ya = awb bv,

wab $y = awb abv \rightsquigarrow repr$.

by a finite automaton A

- Encoding ensuring regular languages and rational relations
- Encoding of a string equation $\psi : a_1 \dots a_n = b_1 \dots b_m$ $(n \ge m)$

$$\textit{enc}(\psi) = \left(egin{actual}{c} a_1 \\ b_1 \end{array} \right) \left(egin{actual}{c} a_2 \\ b_2 \end{array} \right) \ldots \left(egin{actual}{c} a_m \\ b_m \end{array} \right) \left(egin{actual}{c} a_{m+1} \\ \Box \end{array} \right) \ldots \left(egin{actual}{c} a_n \\ \Box \end{array} \right)^*$$

- Encoding can be straightforwardly extended to relations
 - $\mathcal{T}_{v \mapsto \alpha v}^{\leq i} = enc(\langle v \mapsto \alpha v \rangle_i)$ rewrites at most *i* occurrences

- Encoding ensuring regular languages and rational relations
- Encoding of a string equation $\psi : a_1 \dots a_n = b_1 \dots b_m$ $(n \ge m)$

$$\textit{enc}(\psi) = \left(egin{actual}{c} a_1 \\ b_1 \end{array} \right) \left(egin{actual}{c} a_2 \\ b_2 \end{array} \right) \ldots \left(egin{actual}{c} a_m \\ b_m \end{array} \right) \left(egin{actual}{c} a_{m+1} \\ \Box \end{array} \right) \ldots \left(egin{actual}{c} a_n \\ \Box \end{array} \right)^*$$

Example: Equations

wab yab = awb v,

wab ya = awb bv,

wab $y = awb abv \rightsquigarrow repr$.

by a finite automaton A

- Encoding can be straightforwardly extended to relations
 - $\mathcal{T}_{\mathbf{v} \mapsto \alpha \mathbf{v}}^{\leq i} = enc(\langle \mathbf{v} \mapsto \alpha \mathbf{v} \rangle_i)$ rewrites at most *i* occurrences
 - ▶ Example: $\psi: xb = ab, x \hookrightarrow \epsilon$ transformation of ψ is encoded as $\left\{ \left(\left(\begin{smallmatrix} x \\ a \end{smallmatrix} \right) \left(\begin{smallmatrix} b \\ b \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ \Box \end{smallmatrix} \right)^k, \left(\begin{smallmatrix} b \\ a \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ D \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ \Box \end{smallmatrix} \right)^\ell \right) \mid k, \ell \in \mathbb{N} \right\}$

- Encoding ensuring regular languages and rational relations
- Encoding of a string equation $\psi : a_1 \dots a_n = b_1 \dots b_m$ $(n \ge m)$

$$\textit{enc}(\psi) = inom{a_1}{b_1}inom{a_2}{b_2}\dots inom{a_m}{b_m}inom{a_{m+1}}{\Box}\dots inom{a_n}{\Box}^*$$

Example: Equations

wab yab = awb v,

wab ya = awb bv,

wab $y = awb abv \rightarrow repr$.

by a finite automaton A

- Encoding can be straightforwardly extended to relations
 - $\mathcal{T}_{\mathbf{v}\mapsto\alpha\mathbf{v}}^{\leq i} = enc(\langle \mathbf{v}\mapsto\alpha\mathbf{v}\rangle_i)$ rewrites at most *i* occurrences
 - ▶ Example: $\psi: xb = ab, x \hookrightarrow \epsilon$ transformation of ψ is encoded as $\left\{ \left(\left(\begin{smallmatrix} x \\ a \end{smallmatrix} \right) \left(\begin{smallmatrix} b \\ b \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ \Box \end{smallmatrix} \right)^k, \left(\begin{smallmatrix} b \\ a \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ D \end{smallmatrix} \right) \left(\begin{smallmatrix} \Box \\ D \end{smallmatrix} \right)^\ell \right) \mid k, \ell \in \mathbb{N} \right\}$
- The relations $\mathcal{T}_{V \mapsto \alpha V}^{\leq i}$ and $\mathcal{T}_{V \mapsto \epsilon}^{\leq i}$ are rational.

lacksquare Satisfiability checking of a quadratic equation ψ

- lacksquare Satisfiability checking of a quadratic equation ψ
- Regular model checking framework
 - $\mathcal{T}_{\psi} = \mathcal{T}_{v \mapsto \alpha v}^{\leq 2} \cup \mathcal{T}_{v \mapsto \epsilon}^{\leq 2} \quad \rightsquigarrow \quad \text{rational language}$
 - $ightharpoonup \mathcal{I}_{\psi} = enc(\psi) \quad \leadsto \quad \text{regular language}$
 - $ightharpoonup \mathcal{D}_{\psi} = \left(egin{array}{c} \Box \end{array}
 ight)^* \quad \leadsto \quad ext{regular language}$

- lacksquare Satisfiability checking of a quadratic equation ψ
- Regular model checking framework
 - $\mathcal{T}_{\psi} = \mathcal{T}_{v \mapsto \alpha v}^{\leq 2} \cup \mathcal{T}_{v \mapsto \epsilon}^{\leq 2} \quad \rightsquigarrow \quad \text{rational language}$
 - $ightharpoonup \mathcal{I}_{\psi} = \textit{enc}(\psi) \quad \leadsto \quad \text{regular language}$
 - $\triangleright \mathcal{D}_{\psi} = \left(\Box \right)^* \quad \leadsto \quad \text{regular language}$
- Efficiently repr. by automata and length-preserving transducers

- lacksquare Satisfiability checking of a quadratic equation ψ
- Regular model checking framework
 - $ightharpoonup \mathcal{T}_{\psi} = \mathcal{T}_{v \mapsto \alpha v}^{\leq 2} \cup \mathcal{T}_{v \mapsto \epsilon}^{\leq 2} \quad \leadsto \quad \text{rational language}$
 - $ightharpoonup \mathcal{I}_{\psi} = \textit{enc}(\psi) \quad \leadsto \quad \text{regular language}$
 - $\triangleright \mathcal{D}_{\psi} = \left(\stackrel{\square}{\sqcap} \right)^* \quad \leadsto \quad \text{regular language}$
- Efficiently repr. by automata and length-preserving transducers
- **Example:** ψ : xbyy = aabb; part of $\mathcal{T}_{V \mapsto \epsilon}^{\leq 1}$ for $\mathbb{X} = \{x, y\}, \Sigma = \{a, b\}$ (a lot of transitions and states are omitted)

$$\begin{pmatrix} x \\ a \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} y \\ b \end{pmatrix} \begin{pmatrix} y \\ b \end{pmatrix}$$

$$\stackrel{\sim}{(a)} \begin{pmatrix} y \\ a \end{pmatrix} \begin{pmatrix} y \\ b \end{pmatrix} \begin{pmatrix} y \\ b \end{pmatrix} \begin{pmatrix} \Box \\ b \end{pmatrix}$$

- lacksquare Satisfiability checking of a quadratic equation ψ
- Regular model checking framework
 - $\mathcal{T}_{\psi} = \mathcal{T}_{v \mapsto \alpha v}^{\leq 2} \cup \mathcal{T}_{v \mapsto \epsilon}^{\leq 2} \quad \rightsquigarrow \quad \text{rational language}$
 - $ightharpoonup \mathcal{I}_{\psi} = \textit{enc}(\psi) \quad \leadsto \quad \text{regular language}$
 - $\triangleright \mathcal{D}_{\psi} = \left(\stackrel{\square}{\Box} \right)^* \quad \leadsto \quad \text{regular language}$
- Efficiently repr. by automata and length-preserving transducers
- **Example:** ψ : xbyy = aabb; part of $\mathcal{T}_{v \mapsto \epsilon}^{\leq 1}$ for $\mathbb{X} = \{x, y\}, \Sigma = \{a, b\}$ (a lot of transitions and states are omitted)

- Sound; complete for quadratic equations
- Model obtained by a backward run and computing preimages

General String Constraints

Conjunction of quadratic equations $\Psi = \psi_1 \wedge \cdots \wedge \psi_n$

- Delimiter dividing encoded equations
- $enc(\Psi) = enc(\psi_1).\{\binom{\#}{\#}\}...\{\binom{\#}{\#}\}.enc(\psi_n)$
- Modify $\mathcal{T}_{v \mapsto \epsilon}^{\leq 2}$ and $\mathcal{T}_{v \mapsto \alpha v}^{\leq 2}$ accordingly
- Sound and complete
- Example:
 - ► $xay = ya \land xb = z \land z = ba$ \rightsquigarrow quadratic
 - ► $xay = ya \land xb = z \land z = bx \quad \leadsto \quad \text{cubic}$ (3 occurrences of x)

General String Constraints

Conjunction of quadratic equations $\Psi = \psi_1 \wedge \cdots \wedge \psi_n$

- Delimiter dividing encoded equations
- $enc(\Psi) = enc(\psi_1).\{\binom{\#}{\#}\}...\{\binom{\#}{\#}\}.enc(\psi_n)$
- Modify $\mathcal{T}_{v \mapsto \epsilon}^{\leq 2}$ and $\mathcal{T}_{v \mapsto \alpha v}^{\leq 2}$ accordingly
- Sound and complete
- Example:
 - ► $xay = ya \land xb = z \land z = ba$ \rightsquigarrow quadratic
 - ► $xay = ya \land xb = z \land z = bx \quad \leadsto \quad \text{cubic}$ (3 occurrences of x)

Conjunction of general equations Ψ

- lacktriangleright Transformation of Ψ into equisatisfiable cubic system (using fresh variables)
- Integrate this transformation into $\mathcal{T}_{v \mapsto \alpha v}^{\leq 3}$ and $\mathcal{T}_{v \mapsto \epsilon}^{\leq 3}$
- Sound but incomplete

General String Constraints cont.

Boolean combination of equations Ψ

- Inequalities: $t_{\ell} \neq t_r$; remove in a standard way using \land, \lor
 - $\bigvee_{c\in\Sigma}(t_{\ell}=t_r\cdot cx\vee t_{\ell}\cdot cx=t_r)\vee\bigvee_{c_1,c_2\in\Sigma,c_1\neq c_2}(t_{\ell}=x_3c_1x_1\wedge t_r=x_3c_2x_2)$

- Inequalities: $t_{\ell} \neq t_r$; remove in a standard way using \land, \lor
 - $\bigvee_{c \in \Sigma} (t_{\ell} = t_r \cdot cx \vee t_{\ell} \cdot cx = t_r) \vee \bigvee_{c_1, c_2 \in \Sigma, c_1 \neq c_2} (t_{\ell} = x_3 c_1 x_1 \wedge t_r = x_3 c_2 x_2)$
- Disjunction of equalities $\Delta = \psi_1 \lor \cdots \lor \psi_n$
 - $enc(\Delta) = \bigcup_{1 \leq i \leq n} enc(\psi_i)$

- Inequalities: $t_{\ell} \neq t_{r}$; remove in a standard way using \land, \lor
 - $\bigvee_{c \in \Sigma} (t_{\ell} = t_r \cdot cx \lor t_{\ell} \cdot cx = t_r) \lor \bigvee_{c_1, c_2 \in \Sigma, c_1 \neq c_2} (t_{\ell} = x_3 c_1 x_1 \land t_r = x_3 c_2 x_2)$
- Disjunction of equalities $\Delta = \psi_1 \lor \cdots \lor \psi_n$
 - $enc(\Delta) = \bigcup_{1 < i < n} enc(\psi_i)$
- Remove inequalities from Ψ

- Inequalities: $t_{\ell} \neq t_r$; remove in a standard way using \land, \lor
 - $\bigvee_{c \in \Sigma} (t_{\ell} = t_r \cdot cx \vee t_{\ell} \cdot cx = t_r) \vee \bigvee_{c_1, c_2 \in \Sigma, c_1 \neq c_2} (t_{\ell} = x_3 c_1 x_1 \wedge t_r = x_3 c_2 x_2)$
- Disjunction of equalities $\Delta = \psi_1 \lor \cdots \lor \psi_n$
 - $enc(\Delta) = \bigcup_{1 \le i \le n} enc(\psi_i)$
- Remove inequalities from Ψ
- **2** Convert to CNF $\Psi' = \Delta_1 \wedge \cdots \wedge \Delta_k$
 - No Tseitin → introduces negations

- Inequalities: $t_{\ell} \neq t_r$; remove in a standard way using \land, \lor
 - $\bigvee_{c \in \Sigma} (t_{\ell} = t_r \cdot cx \lor t_{\ell} \cdot cx = t_r) \lor \bigvee_{c_1, c_2 \in \Sigma, c_1 \neq c_2} (t_{\ell} = x_3 c_1 x_1 \land t_r = x_3 c_2 x_2)$
- Disjunction of equalities $\Delta = \psi_1 \lor \cdots \lor \psi_n$
 - $enc(\Delta) = \bigcup_{1 \le i \le n} enc(\psi_i)$
- Remove inequalities from Ψ
- **2** Convert to CNF $\Psi' = \Delta_1 \wedge \cdots \wedge \Delta_k$
 - No Tseitin → introduces negations
- 3 $encode(\Psi') = enc(\Delta_1).\{\binom{\#}{\#}\}....\{\binom{\#}{\#}\}.enc(\Delta_n)$

- Inequalities: $t_{\ell} \neq t_r$; remove in a standard way using \land, \lor
 - $\bigvee_{c \in \Sigma} (t_{\ell} = t_r \cdot cx \lor t_{\ell} \cdot cx = t_r) \lor \bigvee_{c_1, c_2 \in \Sigma, c_1 \neq c_2} (t_{\ell} = x_3 c_1 x_1 \land t_r = x_3 c_2 x_2)$
- Disjunction of equalities $\Delta = \psi_1 \lor \cdots \lor \psi_n$
 - $enc(\Delta) = \bigcup_{1 \le i \le n} enc(\psi_i)$
- Remove inequalities from Ψ
- **2** Convert to CNF $\Psi' = \Delta_1 \wedge \cdots \wedge \Delta_k$
 - No Tseitin → introduces negations
- $= ncode(\Psi') = enc(\Delta_1).\{\binom{\#}{\#}\} \dots \{\binom{\#}{\#}\}.enc(\Delta_n)$
 - Sound but incomplete

Implementation

- Transducer $\mathcal{T}_{\psi} \leadsto \text{branches}$ for each choice of x and α $\leadsto \text{huge transducer}$ $(|Unicode| \ge 10^6)$
 - finite-alphabet register transducers
 - \triangleright choice of x and α stored in registers, processed symbolically

Implementation

- Transducer $\mathcal{T}_{\psi} \leadsto \text{branches}$ for each choice of x and α $\leadsto \text{huge transducer}$ $(|Unicode| \ge 10^6)$
 - finite-alphabet register transducers
 - ightharpoonup choice of x and α stored in registers, processed symbolically
 - **Example:** Part of $\mathcal{T}_{x \mapsto \epsilon}^{\leq 1}$. Input variables: α, β , registers: r_1

Implementation

- Transducer $\mathcal{T}_{\psi} \leadsto \text{branches}$ for each choice of x and α $\leadsto \text{huge transducer}$ $(|\textit{Unicode}| \ge 10^6)$
 - finite-alphabet register transducers
 - ightharpoonup choice of x and α stored in registers, processed symbolically
 - **Example:** Part of $\mathcal{T}_{x \mapsto \epsilon}^{\leq 1}$. Input variables: α, β , registers: r_1

- Encoded proof graph represented by deterministic finite automata
 - eager minimization
 - on-the-fly language inclusion checking

Experimental Evaluation

- 1 Kepler₂₂ benchmark [LeHe'18]
 - 600 hand-crafted hard quadratic equations

Z3: 119

CVC4: 266

RETRO: 443

(TO 20 sec)

Experimental Evaluation cont.

- Conjunctions extracted from 967 difficult instances of PYEX
 - symbolic execution of Python programs
 - leads to 20,020 conjunctions of equations
 - ► Z3: 16,788 CVC4: 19,823 RETRO: 16,921 (TO 20 sec)
 - orthogonal approach: RETRO solved 82% instances where Z3 failed and 54% instances where CVC4 failed

Conclusion

- RMC framework for solving of word equations
 - efficiently implemented by register automata
- Future work
 - extensions with efficient handling of length and regular constraints
 - encoding of Makanin's algorithm (sound and complete for arbitrary equations)

Conclusion

- RMC framework for solving of word equations
 - efficiently implemented by register automata
- Future work
 - extensions with efficient handling of length and regular constraints
 - encoding of Makanin's algorithm (sound and complete for arbitrary equations)

THANK YOU!