Succinct Determinisation of Counting Automata
via Sphere Construction

Lenka Turonova'l

Margus Veanes 2, Lukas Holik 1, Ondrej Lengal %, Olli Saarikivi2, Tomas Vojnar?!

LFIT, Brno University of Technology; 2 Microsoft Research, Redmond, USA

Motivation

e pattern matching

e recognising URIs, markup code, pieces of Java code, or SQL queries;
e finding attacks in network traffic;

¢ in real-life XML schemas (bounds 10 million);

¢ identifying credential leaks in source code and configuration files;

e 30-40 % of Java, JavaScript, and Python software;

» efficiency of matching engines — impact on the usability of SW applications

e unpredictability of their performance may lead to catastrophic consequences
(e.g. a global outage of Cloudflare services)

2/12

PATJEHN MA'I'GHING

!
(® ' \

3/14

Regular Expressions with Counters

* counting operator is used in extended regular expressions —a number of
repetitions of subexpressions (e.g. (ab){1,100}) Not supported-no

_ counter
2%

* regexes from a Microsoft product team

e 152 regular expressions

o o s Not m::z:i:n%ted
1%
B Not mondic-no

nested counter

1%
Not supported-counter

4% 4/14

Wide Spectrum of Regex Matching Techniques

matching cost

I cost of dealing
Back with counters:

track
ing
Brzozowski * '
derivatives On-The-
Fly DFA
DFA with DFA +

counters -- symb. §
This talk count.
preprocessing cost 5/14

Naive Determinisation

e classical subset construction in which concrete values of counters become
a part of the control states

Ccemaen |

NCA ~ DFA

6/14

Naive vs Proposed Determinisation

[1.607 - 109 states} [k +1 states}

l#a,po<2 l#a.p1 =2 l+#a,p1 <2
. l2a YF4 ph=po+l ph=po+1 ph=po+l.p,=p1+1
Po =
a T {ro=2}[g.(. 1) {r1=2}(q-(.2)
ply =0 l=a,po=2 l=a,po<2 l=a,p1=2
Po =0 Po=0.p1=po+1 py=0,p;=po+1

7/14

Counting Automata

A=(QCLFb)

Q — a finite set of control states,
e (C —asetof counters, q—{g,f}%}’

I, F—aninitial / final formula,

e A-— asetoftransition formulae: (s=q) AgAfA(s'=1),

* S:aunique state variable,
* g:aguard formulaoninput: (I = a,a € X) and counters (c < k,c = k,k € N),
* f:counterassignment ¢’ := (d + k)/k,where k € N and d is a counter

bounded counters: 3max_.:Vc € C: c < max,

8/14

Proposed Determinisation — Basic Notions

* outcome @ of w € X" — a formula over state variables and counters
representing a set of configurations reachable by reading the word w

[s:cgh({‘ZQvf:S)j [s:qh{ﬁzf sz?)]

 sphere ¥
e created from an outcome by replacing concrete values of the counters
with parameters (a number of parameters up to max, + 1)
e avalue of the counters is computed at runtime

l,bdg(szq/\(c:m V(?:p2)j

9/14

Determinisation: Example (Initialisation)

Z - (Ss :”1) [a.{k}, k = 2}

l#a, » - 1+a,py<?2
l#a p1<k,P{=p1+l o z,;izlk_l p_'l =p1+1,pé=p2+1
1
l=aq /\
p1 =0 /—\ [\
'{S= q\/((.‘=[)1/\8=f')} b[s:qv(c:plf\s:r)V(C:pgAs:r)]

U l=ap, <k U

f=0’ l’= +1
p1=k,p| = L=api=k TOPTR 1=a,p,=2
p; =0 py=0.p1=p1+1

10/ 14

Determinisation — Example (DCA transitions)

=)

* factorisation of guards of transitions leaving a set of NCA states: NCA

a/[Co=0]
gi: U#xa)n(p; <k)

go: (l = a) N (pl < k) ./[co<k:co==cc+1]

g3: U#a)n(py=k)
gs: (L=a)A(p1 =k)

» update: updates of NCA transitions satisfying the guard [* a. {k}, k=2 J

l#fa, » .y l#a,py<?2
p1<kpi=p, +1 @ P2= P, = pi+1ph=py+1

A — A

=qV((?=[)1/\S=!")] =[S=qv(c=p1/\s=r)V(cngAs=r)]

U l=a,p1<k, U

l=a,p1=k, plzorp2:p1+1 1:a,p'2:

p1 = py=0.p1=p1+1

11/ 14

Monadic Regular Expressions

* regular expressions extended with counting limited to character classes

e optimization: parameter values kept in a queue, testing only on maximum
value

monadic non-monadic
*a. {2}, (Karel){2},
|[A—Za—z0 —9_]{4,10} (fixup|squash){2}
http\://www.[A —Za —z0 — 9_] + (7:\\s * SNL){2}

* a much lower worst-case complexity — number of states depends on max,
only polynomially

12 /14

Experimentation

e extension of the Microsoft’s Automata library with a prototype support for counters

e 2362 regexes: network intrusion detection systems (Snort, Bro), Microsoft’s security
leak scanning system, log analyses engine, ...

= - CH S L

S -E L

SE- A Ll g

a S O = | st
= IS
| 100 10000 10 1000 100000
DCA DCA
Ratio of times of conversion of Ratio of the number of states of

13/14
regexes to DFA and DCA DFA and DCA

Future Work

e optimised representations of counters for specific but frequent cases
e efficient algorithm beyond a subclass of monadic regular expressions
® integration to a matching loop, match generator

e |azy vs. eager loops

¢ minimisation of CAs

e Boolean operations (product, complement, ...)

14/ 14

Thank you for attention...

Monadic Regular Expressions

e 152 regular expressions

* 99 % monadic regexes

Monadic-no counter
73,68%

__Not monadic-nested
counter
0,66%

_ Not monadic-no
nested counter
0,66%

16

