
Succinct Determinisation of Counting Automata
via Sphere Construction

1 FIT, Brno University of Technology; 2 Microsoft Research, Redmond, USA

Lenka Turoňová 1

Margus Veanes 2, Lukáš Holík 1, Ondřej Lengál 1, Olli Saarikivi 2, Tomáš Vojnar 1

1

Motivation

2 / 12

pattern matching

recognising URIs, markup code, pieces of Java code, or SQL queries;

finding attacks in network traffic;

in real-life XML schemas (bounds 10 million);

identifying credential leaks in source code and configuration files;

30-40 % of Java, JavaScript, and Python software;

• efficiency of matching engines – impact on the usability of SW applications

• unpredictability of their performance may lead to catastrophic consequences

(e.g. a global outage of Cloudflare services)

3 / 14

Regular Expressions with Counters

4 / 14

• 152 regular expressions

• 31 % regexes with counters

• counting operator is used in extended regular expressions – a number of
repetitions of subexpressions (e.g. (𝑎𝑏){1,100})

• regexes from a Microsoft product team

matching cost

preprocessing cost

DFA

Back
track
ing

NFAOn-The-
Fly DFA

Brzozowski
derivatives

DFA +
symb.
count.

DFA with
counters --

This talk

cost of dealing
with counters:

Wide Spectrum of Regex Matching Techniques

5 / 14

6 / 14

Naive Determinisation

𝐍𝐂𝐀

𝟐𝒌+𝟏 states.∗ 𝒂. {𝒌}, 𝑘 ∈ ℕ

𝐃𝐅𝐀

• classical subset construction in which concrete values of counters become
a part of the control states

𝐃𝐅𝐀 𝐃𝐂𝐀

𝟏. 𝟔𝟎𝟕 ∙ 𝟏𝟎𝟔𝟎 states

𝒌 = 𝟐𝟎𝟎

𝒌 + 𝟏 states

7 / 14

Naive vs Proposed Determinisation

8 / 14

Counting Automata

𝑨 = 𝑸, 𝑪, 𝑰, 𝑭, ∆

• 𝑸 – a finite set of control states,

• 𝑪 – a set of counters,

• 𝑰, 𝑭 – an initial / final formula,

• 𝚫 – a set of transition formulae: (𝑠 = 𝑞) ∧ 𝑔 ∧ 𝑓 ∧ (𝑠′ = 𝑟),

• 𝒔: a unique state variable,

• 𝒈: a guard formula on input: 𝑙 = 𝑎, 𝑎 ∈ Σ and counters 𝑐 ≤ 𝑘, 𝑐 ≥ 𝑘, 𝑘 ∈ ℕ ,

• 𝒇: counter assignment 𝑐′ ≔ (𝑑 + 𝑘)/𝑘,where 𝑘 ∈ ℕ and 𝑑 is a counter

• bounded counters: ∃𝒎𝒂𝒙𝑐: ∀ 𝑐 ∈ 𝐶: 𝑐 ≤ 𝒎𝒂𝒙𝑐

9 / 14

Proposed Determinisation – Basic Notions

• outcome 𝜑 of 𝑤 ∈ Σ∗ − a formula over state variables and counters

representing a set of configurations reachable by reading the word 𝑤

• sphere 𝛹

• created from an outcome by replacing concrete values of the counters

with parameters (a number of parameters up to 𝒎𝒂𝒙𝑐 + 1)

• a value of the counters is computed at runtime

Determinisation: Example (Initialisation)

.∗ 𝒂. {𝒌}, 𝑘 = 2

𝛹𝐼 =

𝐼𝑑 = (𝑠 = 𝛹𝐼)
𝐍𝐂𝐀

10 / 1410 / 14

• factorisation of guards of transitions leaving a set of NCA states:

• update: updates of NCA transitions satisfying the guard

Determinisation – Example (DCA transitions)

𝑔1: 𝑙 ≠ 𝑎 ∧ 𝑝1 < 𝑘

𝑔2: (𝑙 = 𝑎) ∧ 𝑝1 < 𝑘

𝑔3: 𝑙 ≠ 𝑎 ∧ 𝑝1 = 𝑘

𝑔4: (𝑙 = 𝑎) ∧ 𝑝1 = 𝑘

𝑔1: 𝑙 ≠ 𝑎 ∧ 𝑝1 < 𝑘

𝑔2: (𝑙 = 𝑎) ∧ 𝑝1 < 𝑘

𝑔3: 𝑙 ≠ 𝑎 ∧ 𝑝1 = 𝑘

𝑔4: (𝑙 = 𝑎) ∧ 𝑝1 = 𝑘

𝑔1: 𝑙 ≠ 𝑎 ∧ 𝑝1 < 𝑘

𝑔2: (𝑙 = 𝑎) ∧ 𝑝1 < 𝑘

𝑔3: 𝑙 ≠ 𝑎 ∧ 𝑝1 = 𝑘

𝑔4: (𝑙 = 𝑎) ∧ 𝑝1 = 𝑘

𝑔1: 𝑙 ≠ 𝑎 ∧ 𝑝1 < 𝑘

𝑔2: (𝑙 = 𝑎) ∧ 𝑝1 < 𝑘

𝑔3: 𝑙 ≠ 𝑎 ∧ 𝑝1 = 𝑘

𝑔4: (𝑙 = 𝑎) ∧ 𝑝1 = 𝑘

𝐍𝐂𝐀

11 / 14

.∗ 𝒂. {𝒌}, 𝑘 = 2

𝑔1: 𝑙 ≠ 𝑎 ∧ 𝑝1 < 𝑘

𝑔2: (𝑙 = 𝑎) ∧ 𝑝1 < 𝑘

𝑔3: 𝑙 ≠ 𝑎 ∧ 𝑝1 = 𝑘

𝑔4: (𝑙 = 𝑎) ∧ 𝑝1 = 𝑘

Monadic Regular Expressions

12 / 14

• regular expressions extended with counting limited to character classes

• optimization: parameter values kept in a queue, testing only on maximum
value

• a much lower worst-case complexity – number of states depends on 𝑚𝑎𝑥𝑐
only polynomially

.∗ 𝒂. 𝟐 ,

𝑨 − 𝒁𝒂 − 𝒛𝟎 − 𝟗_ 𝟒, 𝟏𝟎

𝒉𝒕𝒕𝒑\://𝒘𝒘𝒘. 𝑨 − 𝒁𝒂 − 𝒛𝟎 − 𝟗_ +

(𝑲𝒂𝒓𝒆𝒍) 𝟐 ,

(𝒇𝒊𝒙𝒖𝒑|𝒔𝒒𝒖𝒂𝒔𝒉){𝟐}

(? : \\𝒔 ∗ $𝑵𝑳){𝟐}

monadic non-monadic

13 / 14
Ratio of times of conversion of

regexes to DFA and DCA
Ratio of the number of states of

DFA and DCA

• extension of the Microsoft’s Automata library with a prototype support for counters

• 2 362 regexes: network intrusion detection systems (Snort, Bro), Microsoft’s security
leak scanning system, log analyses engine, …

Experimentation

14 / 14

optimised representations of counters for specific but frequent cases

efficient algorithm beyond a subclass of monadic regular expressions

integration to a matching loop, match generator

lazy vs. eager loops

minimisation of CAs

Boolean operations (product, complement, …)

Future Work

Thank you for attention...

Monadic Regular Expressions

• 152 regular expressions

• 99 % monadic regexes

16

